SYMMETRIC SEQUENCES
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This paper deals with integer sequences governed by linear recursion relations. To avoid useless duplication, se-
quences with terms having a common factor greater than one will be considered equivalent to the sequence with the
greatest common factor of the terms eliminated. The recursion relation governing a sequence will be taken as the
recursion relation of lowest order which it obeys.

Symmetric sequences are of two types:

A. Sequences with an Unmatched Zero Term

(1) wT_3,T—2,T—1,7T0,T7,T2,7T3, "
with
Th=T-p
B. Sequences with All Matched Terms
() T-3,T—2,T—1,T1,7T2,73,

FIRST-ORDER SEQUENCES
The recursion relation of the first order is:
(3) Tht1 = alp

which will have all terms integers only if a =#7. The only sequences governed by such relations subject to the initial
restrictions given above are:
D 11,1,

L A

These sequences and the sequence -0, 0, 0, 0, --- will be eliminated from consideration in the work that follows.

SECOND-ORDER SEQUENCES

For a recursion relation
Tpe1 = alp+bT g

to have all integer terms, the quantity b must be +7 or —7. The same applies to sequences of higher order. These will
be denoted Case | (+7) and Case Il (—7).
Case |. Tpt1 = alp+ Thog

A. Zero Term
To=Tp—aly,  T_;=Ts—alp=T;—alTa+a’T; =Ty,  alaT;—T3) = 0.
Thus either a=0 or Tp=0. a =0 leads to sequences such as:
-2,32,32323,
If Tp=10,
T_2=T2=Tp—al-; = —aly .

Hence 7o = aT; and T2 = —aT; with the result that a=0.
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B. No Zero Term

T-1=To—al; =Ty, (a+1)T; = T, T-2=Ty=T7—al_; = (1-a)T;.
Therefare a77 = 0. I1f T7 = 0, all the terms are zero. Ifa = 0, we have the type of sequence given above for this value.
Case I1. Th1 = alp—Th-1.

A. Zero Term

To=al;—To, T.1=Ty=alg—T; =a°T;—aTo—T;
(a2 -2)T;—aTp = 0, To=To=al-;—Tg=al-;—aT;+To=Ts .
If symmetry holds up to 7,,, then

@)

Top1=al-p=T_pt1 = alp—Tpo1 = Tpey
and hence the entire sequence will be symmetrical.
EXAMPLES

For any value of a, select 77 and 75 to satisfy (4) in order to generate a symmetric sequence. Thus fora=3, 7T =
3T 2, giving the sequence:
--47,18,7,3,2,3,7, 18,47, ---

governed by
T,-,-{-j = 3Tn— Tn_j .

Fora=8, 62T;=8T>, giving the sequence:
--1921,244,31,4, 1,4, 31,244, 1921, -

governed by Tp,+7,=8T, — Tph_7 .
8. No Zero Term

The relations
T_;=Ty=al;-T2 and Tp=al_;1—-Ty
both lead to
(a—1)T; =T>.
If T_,=T, holdsup to n, then
Top-1 =alon=T_pt1 = aTp=Tpo1 = Tpsr

and the symmetry will be maintained throughout the sequence.
For a=5, To=4T; giving a sequence
--19,4,1,1,4,19, 91,436, -
governed by
The1 = 5T —Thy .

THIRD-ORDER SEQUENCES
Case I. Ther1 =alp+bTp_1+Tpho.
A. Zero Term
Tn2 = Tner—aln—bTp_q, To=Tz—ala—bTq,
T.1=T1=Ty—al;—bTg = To—aT;—hTg+abTo+b°T;

(5) (b2 —a—1)T;+(ab+1)Tp = bT3 .
Also
Tp=To=Ty—aTg—bT-1 = Ty—alg+a’To+abT; —bT;
from which
(6) (ab—b+1)T;+(a%— 1)Tp = aT3

T.3=T3=Tp—al-;—bT-p = T3—aTo—bT;—al;—bT>
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so that

(7) fa+bT;+T2) = 0.
Equation (7) will hold if 6 = —a which makes (5) and (6):

(5") (a2 —a—1)T;+(1—a°)Ty = —aT3
(6" (—82‘/‘3'/'7)7-7'/'(32-— s = als

which are the same relation,  Since
Tg =alz3—bTo2+T; and T _4=T_7—-al_o—bT_3=T;—alo+al3 =Ty

the symmetry persists up to this point. An entirely similar argument shows that it holds in general.
EXAMPLE. For a given value of 4, many symmetric sequences can be determined. For 4= 5,

19T — 24T = =573
from which one may derive any number of symmetric sequences obeying the relation
Tat1 = 8T = 5Tp-1+Th-o.

Examples are:
- 1350, 361,96, 25,6, 1,0, 1, 6, 25, 96, 361, 1350, -

--363,98,27,8,3,2,3,8,27,98, 363, -, -362,97,26,7,2,1,2,7,26,97, 362, -
B. No Zero Term
Ther = alp +an_1+Tn__2, Th-2 = T,,.,.,—aT,,—bT,,..;, T_1=T7=T3—alp—bTy

(8) (b+1)T;+aTo = T3
T o=To=Tz—alT;—5bT_4
(9) (a+b)T; =0

which is satisfied if 5= —a
T_g = T3 = T; ~aT_7 -—bT_2

(10) T3 =(1-alT;+aTy

which agrees with (8) when b = —a.
If the symmetry holds to 7, =7_,, then

Topet = Topio—alpe1taTon = Tnoo—aTp-1+aTp = They

so that all corresponding pairs are equal.
EXAMPLES. For a=4, T3 = 475 — 3T; yields many sequences governed by

Tner = 4Ty —4Tp-1+Tp-2
--233,89,34,13,5,2,1,1,2,5,13, 34, 89,233, -
--177,67,25,9,3,1,1,3,9,25,67,177, -
--265,100,37,13,4,1,1,4, 13, 37, 100, 265, ---

Case I1. Tpt1 = alp+bTp_1—Th2. Th-2 = alpn+bT 71— They
A. Zero Term
To=aTa#hTy—Tg, Togy=Ty = aT;+bTg—To = aT;+baTo+b%T; —bhT3— T
(11) (a+h?—1)T;+(ba—1)To—bT3 = 0
To=Ty=alg—-bT_4-T4 = 327'—2'/'3[77-7 —alz+bT.41—Ty
(12) (ab+b—1)T;+(a°—1)To~aT3 = 0
T.3=T3=aly+bTo—alo—bT1+73
(13) (a—b)T;~Ta) =0

so that b = a satisfies this relation.
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Equations (11) and (12) both become for b =a:

(14)

(a+a—1)T;+(a2—1)To—aT3 = 0.

For a=2, 2T3=5T; + 3T vyields an infinity of sequences satisfying

(15)

(16)

Thi1 = 2T+ 2Tp-1.— Th-2
--64,25,9,4,1,1,0,1,1,4,9,25,64, -
--129,49,19,7,3,1,1,1,3,7, 19,49, 129, ---
--194,73,29,10,5,1,2,1,5,10,29,73, 194, -
--259,97,39,13,7,1,3,1,7,13, 39,97, 259, -
B. No Zero Term
Th-2 = Tpt1—alp—bTp1, T_y =T3z—alz—bT;
(b+1)T;+aTo = T3
T_o=Tgp=To—al7;—-bT_;
(a+h)T; =0 .

Equation (15) becomes 73 = (1 —a)T;+alo for b=—a Now, T_3=T3=T;—al_;—bT>

(17)

T3 =(1-a)T;+al»

in agreement with (15) if b = —a.

whereas

T_4=T_71—al_a+al_.3 = alz—ala>+T;

Tqg=al3—alo—Ty

sothat 7;=0 if T_4=Ty4.
Similarly setting 7_5 = T5 makes 72 =0, etc. Hence this case yields nothing more than the trivial result ---0,0,0,0,0, .

Case I.

(18)

(19)

(20)

(21)

FOURTH-ORDER SEQUENCES
Tpt1 = alp+bTp1+cTp-2+Tp3
A. Zero Term
Th-3 = Tpe1—alp—0bTp-1—¢cTp-2, To=T4—alz—bTo—cTy
T.1 =Ty =Ts—alo—bT;—cTg = T3—aTo—bT;—cTy+acTz+bcTo+c%T;
(c2—b—1)T;+(bc—a)To+(ac+1)T3—cT4 = 0
To=To=To—al;—bTg—cT-7 =To—al;—bTy +abT3+b2T2+b[:T7—cT7
(bc—c—a)T; +b%To+abT3—bT4 = 0
T.3=T3=T7—alg—bT_1—cT_2 = T,—aT4+aZT3+asz+acT1 —bT;—cT2
(ac—b+1)T;+(ab—c)To+(a% - 1)T3—aT4 = 0
To—al-;—bT-p—cT.3 = Tg—aT3—bTo—cT;—al;—bTo—cT3
(a+c)T;+2bTo+(a+c)T3 = 0.

]

T4 =1T4

[FEB.

If this set of four equationsin 7y, T2, T3, T4 is to have a non-zero solution, the determinant of the coefficients
must be zero.

from which

(22)

2—b—-1 bc—a ac+1 —c?

bc—c—a b2 ah —b | _ 0
ac—b+1 ab—c a2—1 -a
‘ atc 2 at+c 0
(a+bh+cl-a+b—cha?—c2+4b) = 0 .
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Before proceeding to further analysis some relations will be derived from equations (18) to (20). From (18) and (19)

(23) (c?+ac b2 —b)T;—abTo+bT3 = 0 .
From (19) and (20)

(24) (62 —b —ac —a®)T;+bcTo+bT3 = 0
and from (23) and (24)

(25) (¢ +a2 +2ac — 262)T; = bla+c)T>.

THE CONDITIONa +b +¢c=0
b = —a — ¢ substituted into (25) gives

(c? +a2+2ac - 2c% — 242 — 4ac)T; = —(a +c)2T2
so that 77 = 7. Then by (21)
(a+c)T;+2(—a—c)T1+(a+c)T3 =0
so that 73=T7y. By (18),

(c2+a+c—1-c?

—ac—atac+1)T; = cTy
so that 74 = Tq. Ifthetermsup to 7, areall equal to 77, then
Tpne1 =alg+(—a—c)T;+cT1+T7 = Ty
so that all terms of the sequence are the same.
THE CONDITION —a+b —¢c=0

b =a+c leads to
To=-T7, T3=T7, Tga=-T7.

If this alternation holds up to 7, , then
Tper = [al=1)""T +(a+c)=1)"+e(-1)" T +(=1)"]T; = (-1)"T,

so that the alternation continues.
THE CONDITION a2 = c2+4b=0

a and ¢ must be of the same parity.

EXAMPLE: a=1 b=12 ¢c¢c=7.
Using Egs. (18), (19) and (20) we obtain:
36T;+83To+8T3—7T4 = 0,  76T;+144To+12T3—12Tg = 0,  —4T;+5To+0T3—T4 = 0.

from which 77:T2:T3:T4=3:-7:18:-47.
Using the recursion relation
Tnt1 = Tpn+ 12Ty 1+ 7Th2+Th-3

and a corresponding backward recursion relation, the following terms were obtained:
--843,-322 123, -47, 18, —7,3, -2, 3, -7, 18, —47, 123, -322, 843, ---.

Second-Order Factor
If the symmetry is to continue beyond a term 7_,, , the condition for this would be:

Tope1 = Tpag = Topez—al-pio —bT_pr1—¢Tp = Tp-3—alp-2—bTp-1—cTp .
But
The1 = alp+bTp_g+¢cTp2+Tph3 .

Hence there is a relation
(a+ L‘)Tn +2bTpq+(a+c)Tho = 0.

But since 4b = (¢ — a)(c +a) we have in fact

T,-, = (a—¢)T, _1/2—Tn_2 .
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Thus if the symmetry is to continue the terms must satisfy a second-order recursion relation. That they do so can
be seen from factoring
x¥—ax® —bx—c—1=0 intofactors (xZ+Ex+1)(x2+Fx—1) =0,
where £ is (¢ —a)/2. The conditions would be:
(c—a)/2+F=-a or F=—(at+c)/2

from the coefficient of x cubed and the same value of F comes from the coefficient of x. Then the coefficient ofx2
would be: 2. 2
EF = (—¢c*+a%)/4 = —b

as required. Hence the terms obey this second-order relation and this insures the continuation of symmetry beyond
T_4. Note that this is not a proper fourth-order symmetric sequence.

B. No Zero Term
Th-3=Tpt1—alpn—bTp1—¢cTph-2, T4 =Ty =T4—al3—-bT2—cTq

(26) (c+1)T;+bTa+al3—T4 = 0
T2=Top=Tz—alp—bT7—cT_4
(27) (b+c)T;+(a+1)To-T3 =20
T.3=T3=To—al;—bT_1—-cT_2
(28) (a+b)T1+(c—1)To+T3 =0
T4=Tqg=T1—al_1—-bT_2—cT_.3
(29) (a—1)T;+bTo+cT3+T4 = 0.

To have a non-zero solution the following determinant must be zero.

c+1 b a -1
b+c a+1 -1 0
ath c¢-1 7 0
a-1 b c 7

=0

or
(30) (a+h+c)c?-a?—4b) = 0.

As in the zero case, the conditiona + b + ¢ = 0 leads to a sequence where all terms are the same. The other condition
requires that the fourth-order recursion relation have a second-order factor which the terms of the symmetric sequence
must obey. Hence this is a degenerate case also.

Case |l. Tpne1 = alp+bTp_g+cTp2—Tph-3
A. Zero Term
Tpn-3 = alp+bTp-1+cTp-2— Th+1
If the symmetry is to continue indefinitely
Top-1 = al_ps2tbT_pr1+cT_n—T-p+3
Tnt1 = alp2+bTp1+¢cTp—Tp-3 = alptbTp-1+cTp-2—Tp-3
(a—cHTpho—Ty) =0

so that a = ¢ unless there is to be a recursion relation of lower order.
Top =al3+bTo+al;—Ty, T_1=T1=ala+hTy+alg—T3

from which

(31) (a2 +b—1)T;+al(1+b)To+(a% - 1)T3 = aTy
T2=Ts=aly+b(aT3+bTo+al;~—Ty)+al-;—T2

from which

(32) a2 +b)T1+ (b2 - 2)To+abT3 = bTy4 .
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Other relations simply repeat one of the above. Eliminating 7, from (31) and (32):
(33) (62 — b —2a2)T; +alb +2)T5 — bT3 = 0
For given @ and b, a suitable selection of 7y and 72 will given an integral value for 73. Thusfora=7,46 = -5,
—68T1—21T2 = —5T3 .
Ty =1, To=2 T3=22.
Then from (31), T4 = 749. The symmetric sequence:
--38494, 6029, 946, 149,22,2, 1,2, 1, 2,22, 149, 946, 6029, 38494, ---

is governed by the recursion relation: )
Tn+7 = 7T,-, — 5Tn—1 +7Tho—Th-3.

B. No Zero Term
As before the continuation of symmetry for all terms requires that # = ¢ in the relation
Tnt1 = alp+b6Tp_1+¢Tp2—Th-3 .

Two relations are obtained from the requirement 7_; =77 and 7_p= T2, namely:

(34) fa—= 1T, +bT3+aT3 = T4
(35) (b+a)Ty+{a—1)To = T3
The relations for 7_3 and 7_4 repeat these in inverse order.
EXAMPLE: a=-2, b=295§ -3T;-3T5=T3

Ty =4, To=7 Tz=-9.

Then from (34), T4 = 41.

The symmetric sequence:

6399, —1810, 506, — 145,41, -9,7,4,4,7, -9, 41, —145, 506, ~1810, 6399, ---
obeys the recursion relation:
Tpt1 = =2Tp+5Tp 1 —2Tp2—Tp-3
FIFTH-ORDER SEQUENCES
Case |. Thne1 = alpn+bTp_g+cTpo+dlp 3+ Ty
A. Zero Term
To insure symmetry for all 7 we set:
Top-1 = Tpt1 = Toprg—aT 13— bTpi2—cTopeg —dTp = Tpg—aTp.3—bTp2—CcTpg—dTp .
Combining this with the original recursion relation:
(3 +d}{7-n + 7-[7—-3} + (b +C)(Tn_.7 + Tn-Z} =0

so that o = -a and b = -¢ are necessary conditions to prevent reduction to a lower order recurrence relation.
Using the same techniques as previously we have the relations:

(36) (a2+b — 1)T; +(ab — b)To+(~ab —a)T3+ (1 —a°)T4+aT5 = 0
(37) (ab—b+a)T;+ (2 —a—1)To+(1—b2JT3—abT4+b6T5 = 0 .
Eliminating 75 from (36) and (37) gives:

(38) (b2 —b+ab—a°)T; + (a2 +a — b2 )To+(—ab—a)T3+bT4 = 0 .

EXAMPLE: a=5, b=—-3 from which
—28T;+21To+10T3 = 3T,
which is satisfied by 7; =7, To =3, T3 =4, T4 =25. Then from (36)
21Ty — 12T+ 10T3 - 24T4 = —5T5
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which gives 75 = 174,

The sequence

- 190299, 43060, 3745, 2203, 498, 115,25, 4,3, 1, -2, 1, 3,4, 25, 115, 498, 2203, 9745, 43060, 190299, ---
is governed by the recursion relation:
Tne1 = 5T~ 3Tp1+3Tp2—5Tp3+Tn-gq .
B. No Zero Term

An entirely similar analysis leads to two relations:
(39) T5=(1—al]T;—bTo+bT3+aly
(40) Tg=(-b—alTy+(b+1)Ty +aT3

EXAMPLE. a=5, b =-3 From (40),

Ty =-2T1-2T2+5T3

which is satisfied by T7=17, To=3, T3=4, T4=12

Then by (39), Tg=—4T;+3To—3T3+5T4="53. The sequence

- 19428, 4397,995, 227,53, 12,4,3,1, 1,3, 4, 12, 53, 227, 995, 4397, 19428, ---

is governed by the recursion relation:
‘ Tpey = 5T = 3Ty 1+3Tp2—5Ty-3+Tpgq .
Case I1. Tht1 = alp+bTpg+cTp2tdTp.3-Th-g .

In this case symmetry in the sequence requires that a=4 and b =c.
A. Zero Case
The final relations obtained from the analysis are:
(41) (a2 +b — 1)T; +(ab+b)To+ (ab +a)T3+(a° = 1)T4 = aTs
(42) (ab+a+b)T;+(b2+a—1)To+ (b2 — 1)Tg+abTy = bTs
from which
(43) (62 —b —a2 —ab)T;+ (b2 —a2 +a)To+(ab+a)T3 = bT4 .

EXAMPLE. a=3, b =-7. (43) becomes
68T +43To— 18T3 = —7Ty4
which is satisfied by
T1=7, T2=3, T3=9, T4=——5.
Then from (41),
T1-28T>—18T3+8T4 = 375 gives Tg = —95.
The symmetric sequence:
2203, —191, -305, -95,-5,9,3,1,-1, 1,3, 9, -5, -95, —305, —191, 2203, ---
is governed by the recursion relation:
Tot1 = 3Tp~7Tp1—7Tp-2+3Tp-3—Tph-a
B. No Zero Term
The relations obtained are:

(44) (a—1)T;+bTo+bT3+aT4 = Tg
(45) (a+b)T;+(b—1)]To+alT3 = Ty
(46) bT;+aTp = T3

EXAMPLE. a=-5, b =7. (46) becomes 7T; — 572 = T3 which is satisfied by

Ty=1 T2=3 Tz3=-8.
Then (45)
2T1+6T2—-5T3 = Ty gives T,=260..
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Finally (44) —6T1+7To+7T3-5T4 = T5
gives a value T5=—341. The symmetric sequence:
72667, —12195, 2053, 341,60, -8, 3, 1, 1, 3, -8, 60, —341, 2053, —12195, 72667, -

is governed by the recursion relation:
Tpt1 = =T+ 7Tt +7T 20~ 5Tp3—Tpy .

CONCLUSION

From this investigation the following general approach to creating symmetric sequences of integers governed by
linear recursion relations emerges.
(1) Given a linear recursion relation of order &,

Tper = agTptazTp-g+ - +*ag-1Tpt+2+ Tnte+1
the condition of symmetry in the sequence requires that:
_— 3 = ~Ok-
and for the recursion relation:
Tpt1 = a1Tp+agTpog+ - tag-1Tpi+2~ Tn-k+1
symmetry requires that a;=a,_;.
(2) For the reduced number of parameters a;, set up a corresponding number of symmetry conditions using the
first few terms of the sequence. /
(3) Using these conditions, select values for the parameters a; and then find starting values in integers that satisfy

the given conditions.
Yotokohodokok



