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1. INTRODUCTION 
The Eulerian numbers Ank are usually defined by means of the generating function 

oo n 

(1.1) - f ^ T - = / + E 4 E AnkYk-' 
Xy-1 „ ^ /?/ ^ " ' * 

5 -V n=1 k=1 
or equivalently 
1.2 !-^- = / f V L ^ , * 

From either generating function we can obtain the recurrence 
(1.3) An+hk = (n-k + 2)Anfk_1+kAnfk 

and the symmetry relation 
(1.4) Anrk = An^k+1 . 
For references see [5, pp. 487-491], [6], [7], [8, Ch. 8]. 

In an earlier expository paper [1] one of the writers has discussed algebraic and arithmetic properties of the 
Eulerian numbers but did not include any combinatorial properties. The simplest combinatorial interpretation is that 
Ank is the number of permutations of . 

Zn = I lZ~.,n I 
with k rises, where we agree to count a conventional rise to the left of the first element. Conversely if we define Ank 

as the number of such permutations, the recurrence (1.3) and the symmetry relation (1.4) follow almost at once but 
it is not so easy to obtain the generating function. 

The symmetry relation (1.4) is by no means obvious from either (1.1) or (1.2). This suggests the introduction of 
the following symmetrical notation: 
(1.5) A(r,s) = Ar+s+1fS+1 = Ar+s+Ur+l = Ms,r). 

It is then not difficult to verify that (1.1) implies 
oo 

from which the symmetry is obvious. Moreover there is a second generating function 

(1.7) E AM (f^JJj = (1+xF(x,y)){1+yF(x,y)), 
r,s=0 

where 
y t/ 

F(x,y) 
xey -yex 

The generating function (1.7) suggests the following generalization. 

^ S u p p o r t e d in pa r t b y NSF G r a n t G P - 1 7 0 3 1 . 
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(1.8) £ ) A(r,s\a,$) ( f ^ = (1+xF(x,y))a(1 + yF(x,y))V , 

r,s=0 

where the parameters a,]3 are unrestricted. Clearly 
A(r,s\1,1) = A(r,s) 

and 
A(r,s\a,$) = A(ss\&a). 

Moreover A (r,s\a, fi) satisfies the recurrence 
(1.9) A(r,s\a,$) = (r + $)A(r,s - 1\a,$) + h +a)A(r- 1,s\a,$). 

It follows from (1.9) and A(0,Q\a,$) = 1 that A(r,s\a,(3) is a polynomial in a,j3 and that the numerical coeffic-
ients in this polynomial are positive integers. Algebraic properties of A(r,s\a,fi) corresponding to the known prop-
erties of A(r,s) have been obtained in [3 ] ; also this paper includes a number of combinatorial applications. We shall 
give a brief account of these results in the present paper. Of the combinatorial applications we mention in particular 
the following two. 

Let P(r,s,k) denote the number of permutations of Zr+S-1 with r rises, s falls and k maxima; we count a conven-
tional fall on the extreme right as well as a conventional rise on the left. We show 

(1.10) P(r+1,s+1,k+1) = (r+
r
srk

2k ) C(r + s,k), 
w h e r e ' ' • 

min(r,s) 
(1.11) A{r,s) = "£ [r + S

r:
2i)c(r + sJ); 

1=0 
£ Y r * « H s equal to the number of permutations of Zr+S+1 with r+ 1 rises, s+ /falls and s+ 1 maxima. Also we ob-
tain a generating function \oxP(r,s,k). 

The element a^ in the permutation (afa2 —an)h called a left upper record if 
a; < ak (1 < i < k); 

it is a right upper record if 
a,- > ak (k < i < n). 

Let A(r,s;t,u) denote the number of permutations with r+ 1 rises, s + 1 falls, t left and u right upper records. Then 
we show that 
(1.12) A(r,s\a,$) = ^A(rA'tfu)at'1pu'1 , 

t,u 

so that the coefficients in the polynomial A(r,s\a,$) have a simple combinatorial description. 
If we put 

An(x,y\a,$) = J2 A(r,s\a,$)xrys , 

r+s=n 
i t 

An(x,y\a,$) = [ax + $y+xy(Dx + Dy)]An-1(x,y\a,$). 

r+s=n 
it follows from the recurrence (1.9) that 

Hence 
(1.13) An(x,y\a>p) = [ax + $y + xy(Dx +Dy)1

n-h 

Thus it is of interest to expand the operator 
SlZ,(i[ajc + Py+xy(Dx + Dy)]n . 

We show that 
n 

(1.14) fi^ = Yi ° V (x>V>(xv)k(Dx + Dy)k, 
k=0 

where 

(1.15) C<nf>(x,y) = jflJ^j- (Dx + Dy)
kAn(x,y) , 
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where 
<a+ $)k= (a + pHa+P + 1) - (a+ j3 + k - 1). 

The case a +j3 equal to zero or a negative integer requires special treatment 
As an application of (1.9) we cite 

minim, n) 

(1.16) Am+n(x,y\a,$) = £ kffiJjL Mk{D* + Dy)
kAm(x,y\a,$HDx + Dy)

kAn{x,y\aM 
k=0 

For additional results see §8 below. 
2. THE N U M B E R S 4 M 

Let 
tr = (a1a2-an) 

denote an arbitrary permutation of Zn. A rise is a pair of consecutive elements a,-, a-l+i such that a\ < a/^.;; & fall 
is a pair a,-,. a,-+j such that ay >a,+ f. In addition we count a conventional rise to the left of 5; and a conventional fall 
to the right of an. If IT has r + 1 rises and 5 + 1 falls, it is clear that 
(2.1) r + s = n+1. 

Let A(r,s) denote the number of permutations of Zr+s+i with r + 1 rises and s+ 1 falls. Let 7rbe a typical permu-
tation with r + 1 rises ands-+ 1 falls and consider the effect of inserting the additional element n + 1. Sf it is inserted 
in a rise, the number of rises remains unchanged while the number of falls is increased by one; if it is inserted in a 
fall, the number of rises is increased by one while the number of falls is unchanged. This implies 
(2.2) A(r,s) = (r + 1)A(r, s-1) + (s+ 1)A(r -Is). 

Next if TX= (a ja2 — an) and we put 
bj = n-aj+1 (i = 1,2, -,n), 

then corresponding to the permutation 7rwe get the permutation 
7r' = (b1h2'"bn) 

which hasr + 1 falls ands+ 1 rises. It follows at once that 
(2.3) A(r,s) = A(s,r). 

Another recurrence that is convenient for obtaining a generating function is 

(2.4) A(r,s) = A(r,s-1)+A(r-1,s) + Y,Ys [ jr++
k
s
+1) AW(r-j- 1,s-k-1). 

j<r k<s 

This recurrence is obtained by deleting the element r + s + 1 from a typical permutation with r + 1 rises and s+1 falls. 
Now put 

J^L Yr s7r+s+l 

(2.5) FM - Z A^ Vrfiw • 
r,s=0 

By (2.4) 

r,s=0 r,s=0 rs=Q 

J ^ vL,kJ+k+1 J ^ yr+1 s+17r+s+1 

j,k=0 r,s=0 
This implies 
(2.6) F'(z) = 1 + (x + y)F + xfF2 . 

Since F(O) = 1, it is easily verified that the differential equation (2.6) has the solution 

P
xz -PYZ 

F(z) = - 2 e— . 
xeyz-yexz 
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Hence, taking z = 1, we get the generating function 

(2.7) 

It is convenient to put 

(2.8) 

It is easily verified that 
(2.9) 
(2.10) 
where Dx = d/ax, Dy = 3/3/ . 

It is evident from (2.7) that 

ex - ev . y A( • xrys 

xe - ye rs=Q 

F = F(x,y) = J ^ ^ L . 
xev - yex 

(Dx + Dy)F = F2 , 

(1+xDx + yDy)F = (1+xF)(1+yF)l 

(1+xDx + yDy)F = £ A(r's) (7^! • 
r,s=Q 

We therefore have the second generating function 
CO 

(2.11) (1+xF(x,y))(l+yF(x,y)) = ] T A(r,s) ^ ^ . 
r,s=0 

We note that iteration of (2.9) gives 
(2.12) (Dx + Dy)

kF = k!Fk+1 . 

3. GENERALIZED EULERIAN NUMBERS 
Put 

(3.1) ^ = * * A W = (1+xF(x,y))a(1+yF(x,y))V 

and define A(r,s\a,$) by means of 
CO 

(3.2) * ^ = £ M'Aa-V jr£j! • 
r,s=Q 

Then we have 
A(rj\1,1) = A(r,s) , 

Airfi11,0) = A(r-1, s), A(r,s\Or1) = A(r,s-1) , 
(3.3) A(v\a>P) = A(s,r\$,a), 
also 
(3.4) A(r,o\a,&) = ar, A(o,s\a,$) = j35 . 

It is easily verified that 
(3.5) (Dx + V ^ / J = (a> + P)F&a,p 
and generally 
(3.6) (Dk + Dy)k$>ar& = (a + $)kFk$>a£ , 
where 

fa*/V* = (a + f})(a + {}+1)- (a + P+k- 1). 
In the next place we have 

(xDx + yDy)&^ = a(1 +xF)a-1(1 + yFft(x + x2Dx +xyDv)F + $(1 + xF)0L(1+yF)&'1 (y+xyDx + y2Dy)F 

= [ax + $y + (a + $)xtF]<$>a£ . 
Hence by (3.5) 
(3.7) (xDx + yDy)&aj = fax + $y+xy(Dx + Dy)] ^ . 
This yields the recurrence 
(3.8) A(r,s\a,$) = (r + $)A(r,s-1\a,$) + (s + a)A(r-l,s\a,$) . 
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We can also show, after some manipulation, that 
r 

(3.9, A^a^i'^^'VY^i^Atr-^tM. 

If we take s = 0 and make use of (3.4) we get 

(3.10) (a + k)'(a+(* + *-') ^ ( ^ r ^ f e r - f M J . 
t=o 

If a-^/3 is a positive integer, Eq. (3.10) becomes 

(3.11) <a+X>'[ «J5 Jf 7 ')-±[ «+
a%X

+V-l') Abr-WJ . 
t=0 

Fora = |3 = 1, Eq. (3.11) reduces to the known formula 

(3.12) (x+V"' - £ (*;+T) *«-'-*> = £,{X+riVWl,t+1 • 
t=0 t=0 

In order to get an explicit expression iox A(r,s\a,$) we take 

Then , , * * K e 

1+xF = MFihlr 1+yF=I^i)el 
™y-yex

 xey-ye 

$ „ = (x-vi^e**™ = f w \ a + V ^ _ f * (a+Vk xk
 (1_ey-x)k

e&(Y-x> 

* * (Xey-ye«r \x-y-x(1-ey-x}j £ ~ M * 

Ar=0 ' * - / ' j=0 n=0 k=0 ^X'Y) j=0 

= tifi ^ E ^ ' ( " 7 * ) ^-f^+fE M/( ; )«W 
oo ^ r~f~s 

- E £&• E <->>««+>•>"Zw*fe ( " 7 * ) • 
r,s=0 y=0 fc-y 

The sum on the extreme right is equal to 
/ a+$+j- 1 \ { a+(3 + r + s\ 

so that 

**> -ijf^jrt (-i>«[a+*f'-1) (o+/_y+') w s . 
r,s=0 1=0 

Therefore 

ir-y / a + $+j-1 \ f a + $ + r + s \ fR + nr+s 

\r+s 

(3.13) A(v\a.fU « £ t^H ( a ^ / / ~ 7 ) ( a+f*f + s J (P+jT 
j=0 

In view of (3.3) we have also 
S 

(3.14) A(r,s\a,$) = £ M ^ ( " * * / ' - ; ) ( a+^[ + s) (a+i)' 
1=0 

For a = |8 = /, Eq. (3.14) reduces to 
s s+1 

(3-15) ^M ^E^^C's -y 2 ) ff+W*5*' =^(-VHH (si't2,)/"**1 

l=o ri 
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in agreement with a known formula f o r / l n ^ . 
Returning to the recurrence (3.8), iteration gives 

A(r,s\a,P) = (r + P)2A(r,s~2\a,p)+[(r + $)(s + a- D + (s + a)(r + $- 1)]A(r- 1,s-1\a,$) 

+ (s + a)2A(r-2,s\a,$). 
This suggests a formula of the type 

k 
(3.16) A(r,s\a,$) = J^Bgk -j)A(r-j,s - k+j\a,$) (0<k<r + s), 

j=0 

where B(j,k-j) depends also on r, s,a,$ and is homogeneous of degree k in r, s, a, j3.-Applying (3.8) to (3.11) we get 
B(j,k-j+1) = (r-j + (i)B(j,k-j) + (s-k+j + a-1)B(j-1,k-j+1). 

Replacing k by / + k - 1 this reduces to 
(3.17) B(jjc) = (r-j + $)B(j,k-1) + (s-k + $)B(j-1,k). 
If we put 

B(j,k) = (-Vj+kB(i,k), 
(3.17) becomes _ _ _ 
(3.18) B(j, k) = (j - r - (j)B(j, k-1) + (k-s- ajB(j -1,k). 
Since, by (3.17), 

it follows that 

Hence 

and (3.16) becomes 

B(j,0) = (r + $)j, B(o,k) = (s + a)k , 

B(j, o) = f-r - $)J, B(o, k) = (~s - a)k . 

1(1 k) = A(j,k\-s-a,-r-P) 

(3.19) A(r,s\a,$) = (~1)k J^ A(j,k-j\-s - a,-r - $)A(r - j,s - k+j\a,$) (0<k<r + s). 
i=0 

For k = r + $ Eq. (3.19) reduces to 
(3.20) A(r,s\a,P) = (-D1**A(r,s\s -a, -r-0) 

which can also be proved by using (3.13). Substituting from (3.20) in (3.19) we get 
k^ 

(3.21) -A(r,s\a,P) =}^ Allk-j\s - k +j + a,r-j + p)A(r-j',s-k +j\a,&) (o<k<r + s) . 

j=0 

We remark that (3.21) is equivalent to 
(3.22) $a,p ^x(7 + z), y(l + z) | = ^ \ x + xyzF(xz, yz), y + xyzF(xzf yz) | ^ f r z , yz) . 

4. THE SYMMETRIC CASE 
When a=j3 we define 

(4.1) A(r,s\a) = A(r,s\a,a) = A(r,s\a,a) 
and 

®a(x,y) = &a,afcy) = ®dV,*) • 
Since ®a(x, y) is symmetric in x, y we may put 

(4.2) *a(x,y) = £) £ C(nJ\a) (Mlz^L . 
h=0 2j<n 

Since 
{xDx+yDy)$a = a(x + y)<§>a+xy(Dx + DY)$a 

and 

w>**wy*a- E Jy(nj\a)^l^yj"'2i 
n=1 2/<n 
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1/1-2/ 

n=1 2j<n 

it follows that 
(4.3) 

The special case 

(4.4) 

n=1 2j<n n=1 2j<n 

C(n,J\a) = 2(n-2j + 1)C(n- 1,j- 1\a) + (a+j)C(n - 1,j\a) . 

n-2J 

n=0 2n<j 

C(n,j) = C(n,i\1). 

F(X,V)=Y: E C(nJ) (MliOLlll 

is of interest. It is easily seen that 
(4.5) 

In the next place it follows from (4.2) that 
min(r,s) 

(4.6) A(r,s\aJ = £ ( r*S_]2J) C(r + s,j\aJ 
1=0 

and in particular, fo ra = /, 
min(r,s) 

R 7 ) A(r,s) = Y, ( f r - 7 2 / ) M + sJ). 

1=0 
To invert (4.7) we use the identity 

*n+vn = X (~vJ -^r ( n J ' ) (xy}j(x+v)n~2j 

2j'<n 

We find that 

C(n,k\a) = YJ (~1>k~r i 
n - 2r n — k — r A(r,n - r\a) 

•k~r \ k - r 

(4.8) I r~° (nt2k), 
J k-1 

C(2k,k\a) =2 J2(-Hk'r^2k-r\aJ+A(k,k\a) . 
r=0 

To get a generating function for C(n,j\a) put u=x + y, v = xy in (4.2). We get after some manipulation 

(4.9) £ C(n+2U\aJ J^JJJ = j cost, XjF=W - u ^ ^ ^ *'** 
n,j=0 

The following values of A(r,$), C(n,j) are easily computed. 
A(r,s) 

1 
1 1 
1 4 1 
1 11 11 1 
1 26 66 26 1 
1 57 302 302 57 1 

C(n,j) 

22 16 
52 136 

5. ENUMERATION BY RISES, FALLS AMD MAXIMA 
We consider first the enumeration of permutations by number of maxima. Let M(n,k) denote the number of per-

mutations of Zn with k maxima. Since we count a conventional fall on the right there is no ambiguity in counting the 
number of maxima. For example the permutation (1243) has one maxima while (3241) has two. 

Let 7r denote an arbitrary permutation of Zn with k maxima. If the element/? + 1 is inserted immediately to the 
left or right of a maximum the number of maxima does not change. If however it is inserted in any other position, 
the number of maxima becomes k+h Therefore we have 
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(5.1) M(n +1,k) = (n-2k + 3)M(n, k-l)+ 2kM(nf k). 
If we put _ 

M(n,k) = 2n~2k+1M(n,k), 
(5.1) becomes _ _ _ 
(5.2) M(n + 1,k) = 2(n-2k + 3)M(n,k-1) + kM(n,k) (1 < k < n) . 

If we take a = 1 in (4.3) we get 
(5.3) C(n,j) = 2(n-2j+1)C(n-l,j-1) + (j+1)C(n-1,j) (0 < j < n) . 
St follows that __ 

M(n + 1,k+1) = C(n,k), 
so that 
(5.4) M(n + 1,k+1) = 2n~2kC(n, k). 

Thus (4.9) yields the generating function 
oo 

(5.5) J] M(n +2j+ 1,j + 1) (
J~4TI = \ cosh^JlF^ -—^—sinh^F^V \ ~2 . 

n,j=0 

This result may be compared with [4 ] . 
We now consider the enumeration of permutations by rises, falls and maxima. Let P(r, s, k) denote the number of 

permutations with r rises, s falls and k maxima, subject to the usual conventions. Let 7fbe an arbitrary permutation 
with r rises, s falls and k maxima and consider the effect of inserting the additional element r + s. There are four pos-
sibilities depending on the location of the new element. 

(i) immediately to the right of a maximum: 
r-+r+1, s -+s, k-+k; 

(ii) Immediately to the left of a maximum: 
r-+r, s-+s+1, k-+k; 

(iii) in any other rise: 
r-+r, s-+s+1, k-^k+1; 

(iv) in any other fall: 
r-+r + 1, s-+s, k-+k+ 1 . 

We accordingly get the recurrence 
(5.6) P(r, s, k) = kP(r - 7, s, k) + kP(r, s-1,k) + (r-k+ 1)P(r, s - 1,k - 1) +($ - k+ 1)P(r -1,s,k-1). 

It is convenient to put 
(5.7) P(r,s,k) = ( r+

r
s_-2k)B(rfs/kj. 

Then (5.6) becomes 
(5.8) B(r,s,k) = k(r ~ kJ B(r-1,s,k)+ k[s~kl B(r,s-1,k) 

r + s -2k r + s -2k 
+ (r + s-2k+ 1)(B(r- 1,s, k- 1)+B(r,s- 1,k)). 

We then show by induction that 
B(r,s,k) = <t>(r + s,k), 

that is, B(r, s, k) is a function of r + s and k. Indeed we show that 
(5.9) B(r+1,s+1,k+1) = C(r + s,k), 

where C(r + $, k) has the same meaning as in (5.3). 
Substituting from (5.9) in (5.7) we get 

(5.10) Ptr+1,s+1,k+1) = ir+r
s_7k

2k) C{r + s,k). 

It follows from (5.10) that 

M(n+1,k+1)= X P(r+hs+1,k+1) = £ ( r+
r*Sk

2k) C(r + s,k) = 2n~2kC(nt k) 

r+s=n r+s=n 

in agreement with (5.4) 
We remark that for r = s = k 

(5.11) P(k+1,k+1,k+1) = C(2k,k) = A(2k+1), 
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the number of down-up (or up-down) permutations of Z2k+1 • It is well known that 

= tan x. 
nr-^ V2k+T 

(5.12) 22A(2k+7) X 
(2 k + 1)1 

0 
Generating functions for P(r, s,k) are furnished by 

00 mm (r,s) , 
(5-13) Z E Hr+1's+1-k+1) (?+

Ys+w = F<U>V>> 
r,s=0 k*0 

and 
°° min(r,s) r s k 

(5.14) YJ ] T P(r+1,s+1,k+ 1) p^z .= (7 + UF(U, V»(1 + VFOJ, V)) 
r,s=0 k=0 

where 

(5.15) 

and 

U = 1/2(x + y + sj(x + y)2 - 4xyz) 

V = 1Mx + y - sj(x + y)2 - 4xyz) 

F(U, V) = e--e 

Uev-Veu 

6. fa,/3ASEQUENCES 
Let a,|3 be fixed positive integers. We shall generalize rises, falls and maxima in the following way. In addition to 

the "real" elements 1, 2, —,n we introduce two kinds of "virtual" elements which will be denoted by the symbols 0, 
0'. There are a symbols 0 and /? symbols 0'. To begin wrth (n = 1) we have 
(6.1) SzJL1 Z-^JL 
We then insert the symbols 2, 3, —, n in ail possible ways subject to the requirement that there is at least one 0 on 
the extreme left and at least one 0' on the extreme right The resulting sequence is called an (a,/^-sequence. A rise is 
defined as a pair of consecutive elements a, b with a < b; here a may be 0. A fall is as a pair of consecutive elements 
a, b with a >Z?;nowZ? may be 0'. The element/? is a maximum If a, b,c are consecutive and afb is a rise while/?, c is 
a fall. For example in 

02301540'0'60' 
we have 

a = 2, 0 - 3, r = 4, s =• 3, k = 7. 
Let P(r, s, k|a, $) denote the number of fa,/̂ -sequences with r rises, s falls and k maxima. Then we have the 

recurrence 
(6.2) P(r,s,k\a,&) = (k + -1)P{r- 1,s, k\a,$) + (k + -1)P(r,s- 1,k\a,&) 

+ (r-k+ 1)P(r, s-1,k-1 \a,0) + (s~k + 1)P(r -1,s,k- 1\a,$). 

In the special casea = j3we put 
(6.3) P(r, s,k\a) = P(r, s, k\a,a). 
We also put , \ 
(6.4) P(r,s,k\a) = [r +

r
s~k

2k ) Q(r,s,k\a). 

Now let M(n, k\a,$) denote the number fa,j3Asequences with /? real elements and k maxima. Then we have the 
recurrence 
(6.5) M(n + 1,k\a,&) = (2k + a + $-2)M(n, k\a,&) 

+ (n-2k + 3)M(n,k-1\a,$). 
In particular, for 

M(n,k\a) = M(n,k\a,a), 
(6.5) reduces to 
(6.6) M(n+1,k\a) = 2(k + a- 1)M(n, k\a) + (n - 2k + 3)M(n, k - 1\a). 
We find that 
(6.7) M(n+1,k+1 \a) = 2n~2kC(n,k\a) , 
and 
(6.8) Q(r+1,s+1,k+1\a) = C(r + s,k\a). 
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Hence, by (6.4) and (6.8), , , 
(6.9) P(r+hs+1,k+1\a) = ( f

S.72k ) C(r + s,k\a). 

A generating function forP(r + 1,s+1,k+1\a) is given bv 
°° min(r,s) f g k 

(6.10) X ) £ P(r+1,s+1,k+1\a) ^f^j- = (1 + UF(U,V))a(1 + VF(U,V)f , 

r,s=0 k=0 
where U, V are given by (5.15). 

For a generating function for P(r + 1,s+ 1, k+ 1\a,@) see [3 ] . 
7. UPPER RECORDS 

Returning to ordinary permutations, let IT = (a-j a2 -an) be a permutation of Zn. The element^ is called a left 
upper record if 

a-, < a^ (1 < / < k); 
it is called a right upper record if 

a*- > a, f/r < / < n). 

Let Air, s; tf u) denote the number of permutations with r+1 rises, s + 1 falls, t left and £/ right upper records. We 
make the usual conventions about rises andjalls. Also let Air, s; t) denote the number of permutations with r+ 1 
rises, s + /falls and t left upper records; let A(r,s, u) denoti e number of permutations with r+1 rises, s+ 1 falls 
and u right upper records. 

To begin with we have 
r-1 s-1 

(7.1) A(r,s;t+1) = ^ X ! ( j + k + 1 )&(!, k;t)A(r-j - 1,s - k - 1) + Air - 1,s;t) it > 0) 
j=0 k=0 

and 
(7.2) A(r,s;1) =A(r,s~1) is > 1). 

Put 

r,s=0 
Then,for t > 0 , 

^ yr+1.s7r+s+1 ~ JtfkJ+k+1 ^ vr+1 s+1 r+s+1 

r,s=0 j,k=0 r,s=Q 

so that 
(7.3) F't+1(z) = Ft(z)(x+xyF(z)), 
where 

Fiz) 
xey

z-yexz 

Also, by (7.2), 
(7.4) F'rfz) = 1+yFiz). 

If we put 

it follows from (7.3) and (7.4) that 

Giz) = J^ * W 

Giz) = XG(z)(x + xyF(z)) + \( 1 + y.F(z)). 

The solution of this differential equation is 
(7.5) Giz) = l^(i-hxF(z))x-l} . 

Similarly if we put x 

FuM = £ A(r,s;u) */+*+ J}/ , Giz) = £ Fu(z)\u 

r,s=0 ' u=1 
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we have _ 
(7.6) G(z) = 1-\(1 + yF(z))x-l\ . 

We now consider the genera! case. It follows from the definition that 

(7.7) Atr,s;t+1,u+1) =Y^[i + kll) A(jf k;t)A(r~i- 1fs - k - 1;u) 
i,k 

and f 

(t > Q, u > 0) 

Now put 

Then 

Therefore, by (7.5) and (7.6), 

A(r, s; hu+1) = Air. s - 1; u) (s > 0, u > 0) 
A(r,s;t+1, 1) = Air- 1,s;t) (r > 0, t > 0) 

r,s=0 

F't+l,u+l(z> = xyFt(z)Fu(z) (t > 0, u > 0) 

F'l.u+lM = V~Fu(z) (u > 0) 

F't+h1(z) = xFt(z) (t > 0) 

F'ii(z) = / 

YJ at$U X Mr.s;t,u) ffi*7/;/ = afi + afi[(1 + xF(z))a - 1] +a&[(1 + yF(z)f - 1] 

+ a&[(1 +xFlz))0i - h[[(1 +yF(z))P-1] = a$(1 +xF(z))a(1 + yF(z))K 

A(r,s;t,u) -
t,u=1 r,s=0 

Taking z= 1 we get 
oo oo 

(7.8) Y, at$U E Mr,$;t,u) jf^j- = a&(1 + xF(x,y))a(1 +yF(x,y))$ , 
t,u™1 t,s=0 

where 

It follows that 

(7.9) 

F(xfy) 
xeY -ye' 

t-1 nU-1 A(r,s\a,$) ='^A(rfs;t/u)at'1^ 

Thus the generalized Eulerian number/4/r, s\a,$) has the explicit polynomial expansion (7.9). 
If we put 

R(n + 1; t, u) = £ ) A(r, s; t, u) 
r+s=n+1 

it is evident that R(n + 1;t, u) is the number of permutations of Zn+<i with t left and u right upper records. By tak-
ing y=x in (7.8) we find that / * 
(7.10) R(n + 1;t+1,u+1) = ( t+

t
u ) S<j(n,t +u), 

where S; (n, t + u) denotes a Stirling number of the first kind. 
In particular, if we put 

R(n + 1;t) = Yl A(r^;t)f R(n+1;t) = ] T A(r,s;t), 
r+s=n r+s=n 

we get 
(7.11) 
It is easy to give a direct proof of (7.11). 

Put 
(8.1) 

R(n;t) = R(n;t) = S7(n,t). 

8. EULERiAW OPERATORS 

An(x,y) = ] £ A(rj)xrys . 
r+s=n 
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It follows from recurrence (2.2) that 
(8.2) An(x,y) = (x + y+ xy(Dx + Dy))An„1 (x, y). 
Iteration of (8.2) gives 
(8.3) An(x,y) = (x + y+xy(Dx + DY))n>l. 

It is accordingly of interest to consider the expansion of the operator 
(8.4) nn = [x + y + xy(Dx + Dy)]

 n . 
We find that 

n 

(8.5) n n = J2 CnM(xfy)(xy)k(Dx + Dy)
k , 

k=0 

where 
(8.6) CnM(x. y) = m i j j j (Dx + Dy)

kAn(x, y). 
More generally if we put 

(8.7) An(x,y\a,fl) = £ A(r,s\a,(i}xry8 , 
r+s=n 

it follows from (3.8) that 
(8.8) An(x,y\a,$) = [ax + $y+xy(Dx + Dy)]An-1(x,y\a,$). 
Thus 
(8.9) An(x,y\a,P) = fax + &y + xy(Dx +Dy)]

n-1, 

so that it is of interest to expand the operator 
(8.10) ttgj EE [ax+py + xy(Dx + Dy)J

n . 
We find that 

n 

(8.1 D ns,,, = X cffifc y)Mk(°x + oy)
k, 

k=0 
where 
(8.12) C^Ux,y) = m^jfk (Dx + Dy)

kAn<x,y\a,$) 

provided a + j3 is not equal to zero or a negative integer. Note that 
fl = « / , / , CnM(x,y) = C(

n]k
1)(x,y). 

As an application of (8.8) and (8.11) we have 
min(m,n) 

(8.13) Am+n(x,y\a,$) = £ —(^jj-{xy)k(Dx + Dy)
kAm(x,y\a,p)-(Dx + Dy)

k-An(x,y\a,p), 

where again a + |3 is not equal to zero or a negative integer. 
Whena=/3 = 0, (8.11) becomes 

(8.14) (xy(Dx + DY))n = £ cj%" (x. y)(xy)k(Dx + Dy)
k (n > 1) . c(0.0), 

k=1 
We find that 
(8.15) C(

n°f(x,y) = ̂ ^jjj (Dx + Dy)
k-1An^(xfy) (1 < k < n). 

The formula 

(8.16) Cffifoy) = m ^ w £ ( l)(Dx + Dy)
k^AM(xfy^An.r(xfy\a^) (1< k < n) 

l=k 
holds for arbitrary a,j3. When a = 0 =0, (8.16) reduces to (8.15). 

In the next place we consider the inverse of (8.11), that is, 
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(8.17) (xy)n(Dx + Dy)
n = £ B(«f (x, y ) ^ . 

k=0 
We find that 
(8.18) (Dx + Dy)BJ«kV(x,y) = n(a + $ + n- W** k (x, y) 
and 

(8-19) E £E *$"<w* - ̂ * = e - ™>~a~v<1 - y ^ + v 

n=0 k=0 

In the special case a = 0 = 0 we put 
'8-2°) . bnfk^7-LTrB<°f(x.y) (n>J). Then we have 
(8.21) bn1 =^=^ 

(n-t)l °"'k 

bn,1 x-y 
n 

(8.22) 

and generally 

(8.23) 

bn+1,2 = J2 1 °j°n-j+1 

Jn+ hk ~ ] C Jbj,k-1 °n-j+1 • 

This may also be written in the form 
n 

(8-24) *>n+k,k = z J j + k- 1 b/+k-1,k-1°n-f+1 • 
Thus for example J 

bn+3,n = J^ (i+l](j + 2) °i+1GH+1°n-j+1 
0<i<j<n 

bn+4,n = E (i+1)(j+
1

2){k + 3) Gi+1°H+1°H+1°n-k+1 
0<J<j<k<n 

and so on. 
For proof of the formulas in this section the reader is referred to [2 ] . 
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