FIBONACCI TILES

HERBERT L. HOLDEN Stanford Research Institute, Menlo Park, California 94025

1. INTRODUCTION

The conventional method of tiling the plane uses congruent geometric figures. That is, the plane is covered with non-overlapping translates of a given shape or tile [1]. Such tilings have interesting algebraic models in which the centers of each tile play an important role.

The plane can also be tiled with squares whose sides are in 1:1 correspondence with the Fibonacci numbers in the manner shown in Fig. 1 and such patterns can be used to demonstrate interesting algebraic properties of the Fibonacci numbers [2].

Similar spiral patterns can be obtained with squares whose sides are in 1:1 correspondence with similar recursive sequences of positive real numbers as in Fig. 2.

Figure 1

Figure 2

We will show that the centers of the squares in such a pattern all lie on two perpendicular straight lines and the slopes of these lines are independent of the choice of f_1 and f_2 . Furthermore, the distances of the centers from the intersection of these two lines also form a recursive sequence.

2. CONSTRUCTION OF THE PATTERN

The pattern in Fig. 2 is a counter-clockwise spiral of squares which fills the plane except for a small initial rectangle. The side of the i^{th} square is denoted by f_i and the f_j are defined by

(1)
$$f_{i+2} = f_{i+1} + f_i$$
 for $i \ge 1$ and $0 < f_1 \le f_2$.

The side of the first square is f_1 and for notational convenience we define

$$f_i = f_{i+2} - f_{i+1} \quad \text{for} \quad i \leq 0 \; .$$

The position of successive squares in the spiral can be conveniently expressed in terms of an appropriate corner point of each square and a sequence of vectors which are parallel to the sides of the squares. Consider the sequence of vectors V_i defined by

$$V_1 = (1,0)$$
 $V_{i+1} = V_i \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ for $i \ge 1$.

This sequence consists of four distinct vectors:

FIBONACCI TILES

46 (2)

$$V_i \in \left\{ (1,0), (0,1), (-1,0), (0,-1)
ight\}$$

The vestors in this sequence have the property that $V_{i+2} = -V_i$. If P_1 denotes the lower right corner point of the first square (see Fig. 3) then successive corner points are given by $P_i = P_{i-1} + f_{i+1}V_i$. (3)

The center C_i of the ith square is obtained from the corresponding corner point (see Fig. 4) by means of the equation

Figure 3

Figure 4

We now proceed to obtain an expression for the vector between alternate centers. Some sample values for P_i and C_i , are given in Tables 1 and 2.

TABLE 1						
i	f _i	Pi	Ci	$d_i\sqrt{10}$		
1 2 3 4 5 6 7 8 9 10 11	1 2 3 5 8 13 21 34 55 89 144	(1, -1) (1, 2) (-4, 2) (-4, -6) (9, -6) (9, 15) (-25, 15) (-25, 40) (64, -40) (64, 104) (-169, 104)	$\begin{array}{c} (0.5, -0.5) \\ (0, 1) \\ (-2.5, 0.5) \\ (-1.5, -3.5) \\ (5, -2) \\ (2.5, 8.5) \\ (-14.5, 4.5) \\ (-8, -23) \\ (36.5, -12.5) \\ (19.5, 59.5) \\ (-97, 32) \end{array}$	3 4 7 11 18 29 47 76 123 199 322		
12	233	(-169, -273)	(-52.5, -156.5)	521		

[FEB.

TABLE 2							
i	f _i	P _i	C _i	$d_i\sqrt{10}$			
1	1	(2, -1)	(1.5, -0.5)	5			
2	3	(2, 3)	(0.5, 1.5)	10			
3	4	(-5, 3)	(-3, 1)	15			
4	7	(-5.8)	(—1.5, —4.5)	25			
4	11	(13,8)	(7.5, —2.5)	40			
6	18	(13, 21)	(4,12)	65			
7	29	(-34, 21)	(-19.5, 6.5)	105			
8	47	(-34, -55)	(—10.5, —31.5)	170			
9	76	(89, -55)	(51, -17)	275			
10	123	(89, 144)	(27.5, 82.5)	445			
11	199	(-233, 144)	(—133.5, 44.5)	720			
12	322	(-233, -377)	(-72, -216)	1165			

3. STRUCTURAL PROPERTIES

Lemma 1.

$$C_i - C_{i-2} = \frac{f_{i-1}}{2} (3V_i - V_{i+1}).$$

Proof. From Eq. (4), we have

$$C_i = P_i + \frac{f_i}{2} (V_{i+1} - V_i)$$

$$\begin{split} \mathcal{C}_{i-2} &= P_{i-2} + \frac{f_{i-2}}{2} \ (V_{i-1} - V_{i-2}) = P_{i-2} + \frac{f_{i-2}}{2} \ (V_i - V_{i+1}) \\ \mathcal{C}_i - \mathcal{C}_{i-2} &= P_i - P_{i-2} + \frac{f_i}{2} \ (V_{i+1} - V_i) - \frac{f_{i-2}}{2} \ (V_i - V_{i+1}) \ . \end{split}$$

(5)

Combining Eqs. (5) and (6) and collecting terms in V_i and V_{i+1} we have

$$C_i - C_{i-2} = \frac{1}{2}(2f_{i+1} - f_i - f_{i-2})V_i + \frac{1}{2}(f_{i-2} - f_i)V_{i+1}$$

Using the recursive definition of the f_i (see Eq. (1)), this reduces to

$$C_i - C_{i-2} = \frac{3f_{i-1}}{2}V_i - \frac{f_{i-1}}{2}V_{i+1}$$

Corollary 1.1. The distance between alternating centers is given by :

$$|C_i - C_{i-2}| = \frac{f_i \sqrt{10}}{2}$$

Proof. From the definition of the V_i we have

$$V_i \cdot V_i = 1$$
 and $V_i \cdot V_{i+1} = 0$

FIBONACCI TILES

$$\left|\mathcal{C}_{i}-\mathcal{C}_{i-2}\right|^{2} = \left(\mathcal{C}_{i}-\mathcal{C}_{i-2}\right)\cdot\left(\mathcal{C}_{i}-\mathcal{C}_{i-2}\right) = \frac{9}{4}\,f_{i-1}^{2} + \frac{1}{4}\,f_{i-1}^{2} = \frac{10}{4}\,f_{i-1}^{2} \ .$$

Lemma 2. C_i, C_{i+2} , and C_{i+4} are colinear for all $i \ge 1$. *Proof.* From Lemma 1 we have

$$C_{i+4} - C_{i+2} = \frac{f_{i+5}}{2} \left(3V_{i+4} - V_{i+5} \right) = -\frac{f_{i+5}}{2} \left(3V_{i+2} - V_{i+3} \right) = -\frac{f_{i+5}}{f_{i+3}} \cdot \frac{f_{i+3}}{2} \left(3V_{i+2} - V_{i+3} \right) = -\frac{f_{i+5}}{f_{i+3}} \left(C_{1+2} - C_{i} \right).$$

Hence $C_{i+4} - C_{i+2}$ is a multiple of $C_{i+2} - C_i$ and both vectors have the point C_{i+2} in common.

Theorem 1. The C_i all lie on two perpendicular straight lines. The slopes of these lines are 3 and -(1/3) independent of the choice of f_1 and f_2 .

Proof. By Lemma 2 we need only consider the slopes of $C_4 - C_2$ and $C_3 - C_1$.

$$C_4 - C_2 = \left(-\frac{f_3}{2}, -\frac{3f_3}{2}\right)$$
 and $C_3 - C_1 = \left(-\frac{3f_2}{2}, \frac{f_2}{2}\right)$

Hence the slopes are 3 and -(1/3).

Definition 1. Let *I* be the point of intersection for the two lines in Theorem 1, then the distance from C_i to *I* will be denoted by d_i . That is $d_i = |C_i - I|$. (Sample values are given in Tables 1 and 2.)

Lemma 3.

$$d_i + d_{i-2} = \frac{f_{i-1}\sqrt{10}}{2} , \ d_i^2 + d_{i-1}^2 = \mathcal{U}(f_{i+1}^2 + f_{i-2}^2) \ .$$

Proof. By the definition of d_i we have

$$d_i + d_{i-2} = |C_i - C_{i-2}|$$

and hence the first equation follows from Corollary 1.1. From Equation 4, we have

$$\begin{split} C_{i-1} &= P_{i-1} + \frac{f_{i-1}}{2} \left(V_i - V_{i-1} \right) = P_{i-1} + \frac{f_{i-1}}{2} \left(V_i + V_{i+1} \right) \\ C_i - C_{i-1} &= P_i - P_{i-1} + \frac{f_1}{2} \left(V_{i+1} - V_i \right) - \frac{f_{i-1}}{2} \left(V_i + V_{i+1} \right). \end{split}$$

Since $P_i - P_{i-1} = f_{i+1}V_i$ we have

$$C_{i-1} = \frac{1}{2}(2f_{i+1} - f_i - f_{i-1})V_i + \frac{1}{2}(f_i - f_{i-1})V_{i+1} = \frac{f_{i+1}}{2}V_i + \frac{f_{i-2}}{2}V_{i+1}$$

$$|C_i - C_{i-1}|^2 = (C_i - C_{i-1})(C_i - C_{i-1}) = \frac{1}{2}(f_{i+1} + f_{i-2})$$

By Theorem 1 the triangle formed by the points C_i , C_{i-1} , and I is a right triangle.

$$d_i^2 + d_{i-1}^2 = |C_i - C_{i-1}|^2 = \frac{1}{2}(f_{i+1}^2 + f_{i-2}^2) .$$

We now proceed to find an explicit expression for the d_i which leads to the fact that the d_i form a recursive sequence.

Theorem 2.

$$d_i = \frac{f_{i+3} + f_{i-3}}{2\sqrt{10}}$$

Proof. Let C_{i-2} , C_{i-1} , and C_i be three consecutive centers

$$\begin{aligned} d_i^2 + d_{i-1}^2 &= \frac{1}{4}(f_{i+1}^2 + f_{i-2}^2) \\ d_{i-1}^2 + d_{i-2}^2 &= \frac{1}{4}(f_i^2 + f_{i-3}^2) \\ d_i^2 - d_{i-2}^2 &= \frac{1}{4}(f_{i+1}^2 - f_i^2 + f_{i-2}^2 - f_{i-3}^2) &= \frac{1}{4}(f_{i+2}f_{i-1} + f_{i-4}f_{i-1}) \end{aligned}$$

(7)

[FEB.

Also,

(8)

$$d_i^2 - d_{i-2}^2 = (d_i + d_{i-2})(d_i - d_{i-2}) = \frac{f_{i-1}\sqrt{10}}{2} (d_i - d_{i-2}) .$$

Combining (7) and (8) we have

$$d_{i} - d_{i-2} = \frac{1}{2\sqrt{10}} (f_{i+2} + f_{i-4})$$

and from Lemma 3

$$d_i + d_{i-2} = \frac{f_{i-1}\sqrt{10}}{2}$$

.

.

Adding the last two equations we obtain

$$d_i = \frac{f_{i+2} + f_{i-4} + 10f_{i-1}}{4\sqrt{10}}$$

It is a straightforward albeit tedious exercise to verify from Equation (1) that

$$f_{i+2} + f_{i-4} + 10f_{i-1} - 2f_{i+3} - 2f_{i-3} = 0$$

$$f_{i+2} + f_{i-4} + 10f_{i-1} = 2(f_{i+3} + f_{i-3})$$

$$\therefore d_i = \frac{f_{i+3} + f_{i-3}}{2\sqrt{10}}$$

Theorem 3.

$$d_{i+2} = d_{i+1} + d_i$$
 .

Proof.

$$\begin{aligned} d_{i+1} + d_i &= \frac{1}{2\sqrt{10}} \left(f_{i+4} + f_{i-2} + f_{i+3} + f_{i-3} \right) \\ &= \frac{1}{2\sqrt{10}} \left(f_{i+5} + f_{i-1} \right) = d_{i+2} \end{aligned}$$

REFERENCES

- 1. S.K. Stein, "Algebraic Tiling," *Math Monthly*, Vol. 81 (1974), pp. 445–462.
- 2. Brother Alfred Brousseau, "Fibonacci Numbers and Geometry," *The Fibonacci Quarterly*, Vol. 10, No. 3 (Oct. 1972), pp. 303–318.
- 3. V.E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton Mifflin, Boston, Mass., 1969.
