FIBONACCI TILES

HERBERT L. HOLDEN
 Stanford Research Institute, Menlo Park, California 94025

1. INTRODUCTION

The conventional method of tiling the plane uses congruent geometric figures. That is, the plane is covered with non-overlapping translates of a given shape or tile [1]. Such tilings have interesting algebraic models in which the centers of each tile play an important role.
The plane can also be tiled with squares whose sides are in 1:1 correspondence with the Fibonacci numbers in the manner shown in Fig. 1 and such patterns can be used to demonstrate interesting algebraic properties of the Fibonacci numbers [2].

Similar spiral patterns can be obtained with squares whose sides are in 1:1 correspondence with similar recursive sequences of positive real numbers as in Fig. 2.

Figure 1

Figure 2

We will show that the centers of the squares in such a pattern all lie on two perpendicular straight lines and the slopes of these lines are independent of the choice of f_{1} and f_{2}. Furthermore, the distances of the centers from the intersection of these two lines also form a recursive sequence.

2. CONSTRUCTION OF THE PATTERN

The pattern in Fig. 2 is a counter-clockwise spiral of squares which fills the plane except for a small initial rectangle. The side of the $i^{t h}$ square is denoted by f_{i} and the f_{i} are defined by

$$
\begin{equation*}
f_{i+2}=f_{i+1}+f_{i} \quad \text { for } i \geqslant 1 \quad \text { and } \quad 0<f_{1} \leqslant f_{2} . \tag{1}
\end{equation*}
$$

The side of the first square is f_{1} and for notational convenience we define

$$
f_{i}=f_{i+2}-f_{i+1} \quad \text { for } \quad i \leqslant 0
$$

The position of successive squares in the spiral can be conveniently expressed in terms of an appropriate corner point of each square and a sequence of vectors which are parallel to the sides of the squares. Consider the sequence of vectors V_{i} defined by

$$
V_{1}=(1,0) \quad V_{i+1}=V_{i} \quad\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \text { for } \quad i \geqslant 1
$$

This sequence consists of four distinct vectors:
(2)

$$
v_{i} \in\{(1,0),(0,1),(-1,0),(0,-1)\}
$$

The vestors in this sequence have the property that $V_{i+2}=-V_{i}$.
If P_{1} denotes the lower right corner point of the first square (see Fig. 3) then successive corner points are given by

$$
\begin{equation*}
P_{i}=P_{i-1}+f_{i+1} V_{i} \tag{3}
\end{equation*}
$$

The center C_{i} of the $i^{\text {th }}$ square is obtained from the corresponding corner point (see Fig. 4) by means of the equation
(4) $\quad c_{i}=P_{i}+\frac{f_{i}}{2}\left(V_{i+1}-V_{i}\right)$.

Figure 3

Figure 4

We now proceed to obtain an expression for the vector between alternate centers. Some sample values for P_{i} and C_{i}, are given in Tables 1 and 2.

TABLE 1

i	f_{i}	P_{i}	C_{i}	$d_{i} \sqrt{10}$
1	1	$(1,-1)$	(0.5, -0.5)	3
2	2	$(1,2)$	$(0,1)$	4
3	3	$(-4,2)$	$(-2.5,0.5)$	4
4	5	$(-4,-6)$	$(-1.5,-3.5)$	11
5	8	(9, -6)	$(5,-2)$	18
6	13	$(9,15)$	$(2.5,8.5)$	29
7	21	$(-25,15)$	(-14.5, 4.5)	47
8	34	$(-25,40)$	$(-8,-23)$	76
9	55	$(64,-40)$	$(36.5,-12.5)$	123
10	89	$(64,104)$	(19.5, 59.5)	199
11	144	(-169, 104)	(-97, 32)	322
12	233	(-169, -273)	$(-52.5,-156.5)$	521
	$(-4,2)$		(1, 2)	
		3	2	
			1	

TABLE 2

i	f_{i}	P_{i}	C_{i}	$d_{i} \sqrt{10}$
1	1	$(2,-1)$	$(1.5,-0.5)$	5
2	3	$(2,3)$	$(0.5,1.5)$	10
3	4	$(-5,3)$	$(-3,1)$	15
4	7	(-5.8)	$(-1.5,-4.5)$	25
4	11	$(13,-8)$	$(7.5,-2.5)$	40
6	18	$(13,21)$	$(4,12)$	65
7	29	$(-34,21)$	$(-19.5,6.5)$	105
8	47	$(-34,-55)$	$(-10.5,-31.5)$	170
9	76	$(89,-55)$	$(51,-17)$	275
10	123	$(89,144)$	$(27.5,82.5)$	445
11	199	$(-233,144)$	$(-133.5,44.5)$	720
12	322	$(-233,-377)$	$(-72,-216)$	1165

3. STRUCTURAL PROPERTIES

Lemma 1.

$$
c_{i}-c_{i-2}=\frac{f_{i-1}}{2}\left(3 V_{i}-V_{i+1}\right)
$$

Proof. From Eq. (4), we have
(5)

$$
\begin{gathered}
C_{i}=P_{i}+\frac{f_{i}}{2}\left(V_{i+1}-V_{i}\right) \\
c_{i-2}=P_{i-2}+\frac{f_{i-2}}{2}\left(V_{i-1}-V_{i-2}\right)=P_{i-2}+\frac{f_{i-2}}{2}\left(V_{i}-V_{i+1}\right) \\
C_{i}-C_{i-2}=P_{i}-P_{i-2}+\frac{f_{i}}{2}\left(V_{i+1}-V_{i}\right)-\frac{f_{i-2}}{2}\left(V_{i}-V_{i+1}\right)
\end{gathered}
$$

Combining Eqs. (5) and (6) and collecting terms in V_{i} and V_{i+1} we have

$$
C_{i}-C_{i-2}=1 / 2\left(2 f_{i+1}-f_{i}-f_{i-2}\right) V_{i}+1 / 2\left(f_{i-2}-f_{i}\right) V_{i+1} .
$$

Using the recursive definition of the f_{i} (see Eq. (1)), this reduces to

$$
C_{i}-C_{i-2}=\frac{3 f_{i-1}}{2} V_{i}-\frac{f_{i-1}}{2} V_{i+1}
$$

Corollary 1.1. The distance between alternating centers is given by :

$$
\left|C_{i}-C_{i-2}\right|=\frac{f_{i} \sqrt{10}}{2}
$$

Proof. From the definition of the V_{i} we have

$$
V_{i} \cdot V_{i}=1 \quad \text { and } \quad V_{i} \cdot V_{i+1}=0
$$

$$
\left|C_{i}-C_{i-2}\right|^{2}=\left(C_{i}-C_{i-2}\right) \cdot\left(C_{i}-C_{i-2}\right)=\frac{9}{4} f_{i-1}^{2}+\frac{1}{4} f_{i-1}^{2}=\frac{10}{4} f_{i-1}^{2}
$$

Lemma 2. $\quad C_{i}, C_{i+2}$, and C_{i+4} are colinear for all $i \geqslant 1$.
Proof. From Lemma 1 we have
$C_{i+4}-C_{i+2}=\frac{f_{i+5}}{2}\left(3 V_{i+4}-V_{i+5}\right)=-\frac{f_{i+5}}{2}\left(3 V_{i+2}-V_{i+3}\right)=-\frac{f_{i+5}}{f_{i+3}} \cdot \frac{f_{i+3}}{2}\left(3 V_{i+2}-V_{i+3}\right)=-\frac{f_{i+5}}{f_{i+3}}\left(C_{1+2}-C_{i}\right)$.
Hence $C_{i+4}-C_{i+2}$ is a multiple of $C_{i+2}-C_{i}$ and both vectors have the point C_{i+2} in common.
Theorem 1. The C_{i} all lie on two perpendicular straight lines. The slopes of these lines are 3 and $-(1 / 3)$ independent of the choice of f_{1} and f_{2}.
Proof. By Lemma 2 we need only consider the slopes of $C_{4}-C_{2}$ and $C_{3}-C_{1}$.

$$
c_{4}-c_{2}=\left(-\frac{f_{3}}{2},-\frac{3 f_{3}}{2}\right) \quad \text { and } \quad c_{3}-c_{1}=\left(-\frac{3 f_{2}}{2}, \frac{f_{2}}{2}\right)
$$

Hence the slopes are 3 and $-(1 / 3)$.
Definition 1. Let / be the point of intersection for the two lines in Theorem 1 , then the distance from C_{i} to / will be denoted by d_{i}. That is $d_{i}=\left|C_{i}-I\right|$. (Sample values are given in Tables 1 and 2.)
Lemma 3.

$$
d_{i}+d_{i-2}=\frac{f_{i-1} \sqrt{10}}{2}, d_{i}^{2}+d_{i-1}^{2}=1 / 4\left(f_{i+1}^{2}+f_{i-2}^{2}\right) .
$$

Proof. By the definition of d_{j} we have

$$
d_{i}+d_{i-2}=\left|C_{i}-C_{i-2}\right|
$$

and hence the first equation follows from Corollary 1.1.
From Equation 4, we have

$$
\begin{aligned}
& C_{i-1}=P_{i-1}+\frac{f_{i-1}}{2}\left(V_{i}-V_{i-1}\right)=P_{i-1}+\frac{f_{i-1}}{2}\left(V_{i}+V_{i+1}\right) \\
& C_{i}-C_{i-1}=P_{i}-P_{i-1}+\frac{f_{1}}{2}\left(V_{i+1}-V_{i}\right)-\frac{f_{i-1}}{2}\left(V_{i}+V_{i+1}\right)
\end{aligned}
$$

Since $P_{i}-P_{i-1}=f_{i+1} V_{i}$ we have

$$
\begin{gathered}
C_{i}-C_{i-1}=1 / 2\left(2 f_{i+1}-f_{i}-f_{i-1}\right) V_{i}+1 / 2\left(f_{i}-f_{i-1}\right) V_{i+1}=\frac{f_{i+1}}{2} V_{i}+\frac{f_{i-2}}{2} V_{i+1} . \\
\left|C_{i}-C_{i-1}\right|^{2}=\left(C_{i}-C_{i-1}\right)\left(C_{i}-C_{i-1}\right)=1 / /\left(f_{i+1}+f_{i-2}\right) .
\end{gathered}
$$

By Theorem 1 the triangle formed by the points C_{i}, C_{i-1}, and $/$ is a right triangle.

$$
d_{i}^{2}+d_{i-1}^{2}=\left|C_{i}-C_{i-1}\right|^{2}=1 / 4\left(f_{i+1}^{2}+f_{i-2}^{2}\right)
$$

We now proceed to find an explicit expression for the d_{i} which leads to the fact that the d_{i} form a recursive sequence.

Theorem 2.

$$
d_{i}=\frac{f_{i+3}+f_{i-3}}{2 \sqrt{10}}
$$

Prooff. Let C_{i-2}, C_{i-1}, and C_{i} be three consecutive centers

$$
\begin{gathered}
d_{i}^{2}+d_{i-1}^{2}=1 / 4\left(f_{i+1}^{2}+f_{i-2}^{2}\right) \\
d_{i-1}^{2}+d_{i-2}^{2}=1 / 4\left(f_{i}^{2}+f_{i-3}^{2}\right) \\
d_{i}^{2}-d_{i-2}^{2}=1 / 4\left(f_{i+1}^{2}-f_{i}^{2}+f_{i-2}^{2}-f_{i-3}^{2}\right)=1 / 4\left(f_{i+2} f_{i-1}+f_{i-4} f_{i-1}\right)
\end{gathered}
$$

(7)

Also,
(8)

$$
d_{i}^{2}-d_{i-2}^{2}=\left(d_{i}+d_{i-2}\right)\left(d_{i}-d_{i-2}\right)=\frac{f_{i-1} \sqrt{10}}{2}\left(d_{i}-d_{i-2}\right)
$$

Combining (7) and (8) we have

$$
d_{i}-d_{i-2}=\frac{1}{2 \sqrt{10}}\left(f_{i+2}+f_{i-4}\right)
$$

and from Lemma 3

$$
d_{i}+d_{i-2}=\frac{f_{i-1} \sqrt{10}}{2}
$$

Adding the last two equations we obtain

$$
d_{i}=\frac{f_{i+2}+f_{i-4}+10 f_{i-1}}{4 \sqrt{10}}
$$

It is a straightforward albeit tedious exercise to verify from Equation (1) that

$$
\begin{gathered}
f_{i+2}+f_{i-4}+10 f_{j-1}-2 f_{i+3}-2 f_{i-3}=0 \\
f_{i+2}+f_{i-4}+10 f_{i-1}=2\left(f_{i+3}+f_{i-3}\right) \\
\therefore d_{i}=\frac{f_{i+3}+f_{i-3}}{2 \sqrt{10}}
\end{gathered}
$$

Theorem 3 .

$$
d_{i+2}=d_{i+1}+d_{i}
$$

Proof.

$$
\begin{aligned}
d_{i+1}+d_{i} & =\frac{1}{2 \sqrt{10}}\left(f_{i+4}+f_{i-2}+f_{i+3}+f_{i-3}\right) \\
& =\frac{1}{2 \sqrt{10}}\left(f_{i+5}+f_{i-1}\right)=d_{i+2}
\end{aligned}
$$

REFERENCES

1. S.K. Stein, "Algebraic Tiling," Math Monthly, Vol. 81 (1974), pp. 445-462.
2. Brother Alfred Brousseau, "Fibonacci Numbers and Geometry," The Fibonacci Quarterly, Vol. 10, No. 3 (Oct. 1972), pp. 303-318.
3. V.E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton Mifflin, Boston, Mass., 1969.
