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1. INTRODUCTION 

The conventional method of tiling the plane uses congruent geometric figures. That is, the plane is covered with 
non-overlapping translates of a given shape or tile [1 ] . Such tilings have interesting algebraic models in which the 
centers of each tile play an important role. 

The plane can also be tiled with squares whose sides are in 1:1 correspondence with the Fibonacci numbers in the 
manner shown in Fig. 1 and such patterns can be used to demonstrate interesting algebraic properties of the Fibon-
acci numbers [2 ] . 

Similar spiral patterns can be obtained with squares whose sides are in 1:1 correspondence with similar recursive 
sequences of positive real numbers as in Fig. 2. 
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Figure 2 

We will show that the centers of the squares in such a pattern all lie on two perpendicular straight lines and the 
slopes of these lines are independent of the choice of f-j and /£- Furthermore, the distances of the centers from the 
intersection of these two lines also form a recursive sequence. 

2. CONSTRUCTION OF THE PATTERN 

The pattern in Fig. 2 is a counter-clockwise spiral of squares which fills the plane except for a small initial rectangle. 
The side of the ith square is denoted by fj and the f,- are defined by 

(1) fj+2 = fj+i + f; for i>1 and 0<fj<f2 . 

The side of the first square is f? and for notational convenience we define 

ff = fi+2~fj+l f o r i<0 . 
The position of successive squares in the spiral can be conveniently expressed in terms of an appropriate corner 
point of each square and a sequence of vectors which are parallel to the sides of the squares. Consider the sequence 
of vectors I// defined by . 

Vj = (W Vi+1 = Vi [_° f
0) for / > / . 

This sequence consists of four distinct vectors: 
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(2) V, e { (1,0), (0,1), (-1,0), (0,-1) } 

The vestors in this sequence have the property that V,+2 = - I / / . 
If Pj denotes the lower right corner point of the first square (see Fig. 3) then successive corner points are given by 

(3) .P, = PM + fmV,. 

The center C; of the/ square is obtained from the corresponding corner point (see Fig. 4) by means of the equation 

(4) 

f4 H, 0) 

C, = P; + fi (Vi+1-V;) . 
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Figure 3 Figure 4 
We now proceed to obtain an expression for the vector between alternate centers. Some sample values for/3/ and C\ , 
are given in Tables 1 and 2. 

TABLE 1 

Pi 

1 
2 
3 
4 
5 
6 
/ 
8 
9 
10 
11 
12 

1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 

(1,-1) 
(1,2) 
(-4,2) 
(-4-6) 
(9, -6) 
(9,15) 
(-25,15) 
(-25,40) 
(64, -40) 
(64,104) 
(-169,104) 
(-169,-273) 

Ci d;y/W 

(0.5, -0.5) 
(0,1) 
(-2.5, 0.5) 
(-1.5,-3.5) 
(5, -2) 
(2.5,8.5) 
(-14.5,4.5) 
(-8, -23) 
(36.5,-12.5) 
(19.5,59.5) 
(-97, 32) 
(-52.5,-156.5) 

3 
4 
7 
11 
18 
29 
47 
76 
123 
199 
322 
521 
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TABLE 2 

Pi Cf djyJIO 

1 
2 
3 
4 
4 
6 
7 
8 
9 

10 
11 
12 

1 
3 
4 
7 

11 
18 
29 
47 
76 

123 
199 
322 

(2, -1) 
(2,3) 
(-5,3) 
(-5. 8) 
(13,-8) 
(13,21) 
(-34,21) 
(-34, -55) 
(89, -55) 
(89,144) 
(-233,144) 
(-233, -377) 

(1.5,-0.5) 
(0.5,1.5) 
(-3,1) 
(-1.5,-4.5) 
(7.5,-2.5) 
(4,12) 
(-19.5,6.5) 
(-10.5,-31.5) 
(51,-17) 
(27.5,82.5) 
(-133.5,44.5) 
(-72,-216) 

5 
10 
15 
25 
40 
65 

105 
170 
275 
445 
720 

1165 

Lemma 1. 
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3. STRUCTURAL PROPERTIES 

Ci-ch2 = f-f (3Vi-vi+1). 

Proof. From Eq. (4), we have 
Cj = Pi+j (Vi+1-Vi) 

(5) 

Ci-2 = Pi-2 + fjy <V',-1 - Vi-2> = Pi-2 + f ± f (V,~ Vi+1) 

Ci - Ci-2 = Pi ~ Pi-2 + j (Vj+1 - VS) - fJf- (V; - Vi+1) . 

Combining Eqs. (5) and (6) and collecting terms in Vf and V-l+i we have 

d - Cj-2 = y*(2fi+ 1-fi~ fi-2) Vj + Wj-2 - fi) Vi+1 • 

Using the recursive definition of the // (see Eq. (1)), this reduces to 

W ~ W-2 ~ -J- Vi - ~f~ Vj+1 • 

Corollary 1.1. The distance between alternating centers is given by : 

\Cj-Cj-2\ y 

Proof. From the definition of the I// we have 

I//. I// = / and VrVi+1 = O 
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\C, - Ch2\
2 = (d - Ch2) -(d - CM) =94f?-l+lff?-l = f £, . 

Lemma 2. Cj,Cj+2, and C/+4 are colrnear for all / > / . 
Proof. From Lemma 1 we have 

Cl+4 ~ Ci+2 = ̂ ~ (3Vi+4 - W = - fjjf (3Vi+2 - Vi+3) = J^Jjf- (3Vi+2 - i / , - ^ = - ^ ^ ^ 2 - Cs). / / //-f 3 * Ti+3 
Hence C/̂ .4 - Cj+2 is a multiple of Cj+2 - £7 and both vectors have the point Cj+2 in common. 

Theorem 1. The C; all lie on two perpendicular straight lines. The slopes of these lines are Sand - (1 /3 ) inde-
pendent of the choice of fj and f2. 

Proof. By Lemma 2 we need only consider the slopes of C4 - C2 and C3- Cf. 

C4-c2- (-%-*) and c3-c,- (-%.<£) . 
Hence the slopes are 3 and —(1/ 3). 
Definition 1. Let / be the point of intersection for the two lines in Theorem 1, then the distance from £,- to / will 

be denoted by*/,-. That is dj=\Cj- l\. (Sample values are given in Tables 1 and 2.) 
Lemma 3. 

d, + dh2 = f-±!f±. d? +df_, = X(%,+f?2) • 

Proof By the definition of dj we have 
dj + dh2= \Ci-Cj-2\ 

and hence the first equation follows from Corollary 1.1. 
From Equation 4, we have 

CM = Ph1 + fif (Vi- V,:j) = Ph1 + ff1 (Vi+ Vi+1) 

C.-C,:, =Pi-Pg_j + fJ(v/H-Vi)-ffl (Vi+Vi+1). 

Since P-, - P;.i = fi+1 V; we have 
C,-CM = 'A(2fi+1-fi-fhi)Vi + y,(fi-fh1)Vi+1 = fJ±lVi + f-if-Vi+1 . 

\Cf - C,., f = (Cj - Ch1)(Ci - Ch1) = %(fi+i + fh2) . 

By Theorem 1 the triangle formed by the points C,, C,--j, and / is a right triangle. 
df+dlj = \Cj-Chif = %(ffn + fl2) • 

We now proceed to find an explicit expression for the dj which leads to the fact that the d; form a recursive 
sequence. 

Theorem 2. 
fi+3 + fi-3 

2JW 
di 

If oof. Let C;.2 , Cj-1, and C; be three consecutive centers 
df+dl, = %(ff+1+f,?2) 

df-i+df_2 = Wf+fh) 
(7) df- df_2 = V4(ff+1 _ ff+ff_2 _ f23> = %(f.+2fh1 + fh4fh1) 
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Also, 

<8> df- df_2 = (dg + dh2Mdi - dh2) = fi~7f° (dg - dh2) . 

Combining (7) and (8) we have 

•di-dh2 = j j = (fi+2 + fi-4) 

and from Lemma 3 

di + di-2 - j— 

Adding the last two equations we obtain 

«/. = fi+2+fi-4+ IQfj-i 
4JTo 

It is a straightforward albeit tedious exercise to verify from Equation (1) that 

fl+2 + fi-4 + 10fi-1 - 2fi+3 - 2fh3 = 0 

fi+2 + fi-4 + 10 fi-1 = 2(fi+3 + f,.3) 

_ fi+3 + fi-3 
•'• "' 2JT0 

Theorem 3. 

Proof. 
df+2 = dj+1+dj . 

di+ ,+df* -~j= (f}+4 + fj-2 + fi+3 + fh3> 

= 2JW ^fi+5+fi-1^ = d'+2 
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