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In the present note we obtain certain inequalities which are necessary for the equation of the title to hold for posi-
tive integral n and real 4,6, and ¢ satisfying 7 <a <b <c¢, and iliustrate with several examples. Several preliminary
lemmas are required.

Lemma 1. (a—1)%+(b— 1) = (c — 1)* vanishes at x =n if and only if

a¥X+b% =% = P_qlx)
at x=0,1,-,n, where P,_;(x) isa polynomial of degree n— 7.
Proof. Apply the n™ order difference operator A” to a* +5% — ¢* to obtain
Aa* +b% — %) = (a—1)"a* +(b—1)"6" —(c - 1)"c* ,

which vanishes at x = 0 if and only if % + 5% — ¢ behaves as a polynomial of degreen — 7 atx =0, 7, -, n.
A result in Pdlya and Szegd [1] is needed for the next lemma and may be stated as follows for present purposes:
If a<b<cand puy,us,and uz are positive, then

uya” + uzb™ — uzc™
has exactly one real simple zero. As an immediate consequence of this and other elementary considerations we have
the following result.
Lemma 2. Let
fix) = a*+b* - ¢,
where 7 <a <b <e¢ Then f(k)(x) has exactly one real simple zero, one stationary point at which ) has a positive
maximum and to the right of which £/ is monotone decreasing.

In the following we will always let f{x) and P,_;(x) be as stated in Lemmas 1 and 2.
Lemma 1 says that

Fix) = f{x) —P,_1(x)
has at least n + 7 zeros. That this is the exact number is assured by the next result.
Lemma 3. F(x)=f(x)— P,_7(x) hasat most n+ 7 zeros (counting multiplicity).

Proof. Assume that F has at least 7 +2 zeros. Then F™ has at least 2 zeros. Since P,(,’1)1 = ( thisimplies that £n
has 2 zeros in contradiction to Lemma 2.
Write
Pptlx) = c1+cox+tepx" T,
Our final preliminary result may be stated as follows.
Lemma4. ¢, > 0.
Proof. We know that
fix)—Pp_1(x) = 0
atthe n+7 points x=0, 7, -, n. Thus
1) = (n - 1)ic,
at two points which because of Lemma 2 implies that ¢,, is positive.
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Now consider the special case when n=2.
Theorem 1. \f (a— 1)2 +(b — 1)2 — (¢ — 1)2 =0 then

(1) ab/c < e¥0cT
(2) a?hP/cc > g2tb-c-1
and

3) a@ b’/ < gatbc-1

Proof. By the preceding lemmas we know that in Py(x)=c7+cox wehave co> 0, that
flx) = a* +b* - c*

is monotone decreasing for all sufficiently large x, and that f{x) — P;(x) has simple zeros at precisely x = 0, 7, 2. This
requires that 712) <P%(2) and in turn £(7) > P3(1) and #10) < P%(0). In other words, using the last of the three in-
equalities, we have /nfab/c) <co. co can be easily determined from the coincidence of f(x) and P;(x) atx =0, 1, 2
to give cp=a +b — ¢ — 1. Hence, finally, ab/c < e?"07¢=1 The inequalities (2) and (3) follow in a similar manner
from #17) >P3(1) and 712) <P3(2).

Forthe case of n = 3, the following result can be obtained by arguments similar to those used above for Theorem 1.
The proof is therefore omitted.

Theorem 2. |f (a—1)°+(b—1)° = (c - 1)3=0, then

(1) ab/c > e@tbc-1-cs

2) a®bP /e < b1t
2 g2 2 e

3) P bb /€ >Ea+b c-1+3c, ,

and s s s

(4) aa bb /c(.‘ < Ea+b—c—1+503 ,

where

c3 = Bla2+b2—c2+1-2a—2b+2c].

Inequalities of a similar nature may be found for any given value of 1, however let us proceed to a result for arbi-
trary n. By L, (a) we shall mean the partial sum of the first » — 7 terms of the formal Maclaurin series for log g, i.e.,

n-1 P
Lofa) = 3 (~1)}T &
Theorem 3. Let(a-1)"+(b~1)"-(c-1)" =0 'I{(h_ez\
(—1)"(loga+log b — logc) < (—1)" [Lpla) + L) — Ly(c)] .
Proof. Proceeding as for Theorem 1, we find that
(—1)"£10) < (=1)"Pp_1(0).

Write
n-1
Pn_7(X/ = z: L‘kX(k} R
k=0
where

x® = x(x=1)(x—n+1).

Gregory-Newton interpolation gives
cx = AR#0) /K1 .

Now
Akax = (a—1)ka%
from which it follows that
AKHO) = (a—1)%+(b—1)% —(c— 1)k .

Therefore, since
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z%’(m'x:o = (=1 (k- 1)1,
we have
(~1)"na+inb—inc) < (~1)" % (1) K= DL g — 1)k o (o= 1)K — (e = 1)K,
as desired. !

We give an indication, in the following examples, of the sharpness of the inequalities obtained above. First we take
n=2 a=4, b =5, inwhich case inequalities (2) and (3) of Theorem 1 yield ¢ < 6.5 and ¢ > 5.9, respectively, brack-
eting the known solution ¢ = 6. This example corresponds to the well-known Pythagorean triple 3,4,5 which satisfies
32+42=52 tfwenow take n=3, a=2 b=3, then inequalities (2) and (4) of Theorem 2 givec < 3.2and¢c >
3, whereas the actual solution of

1+425-(c—1)3=0
is

c=1+V4 = 308
The sharpness of these results seems rather surprising when one considers that they are based on such simple consid-
erations as the relative slope of two curves at their points of intersection.
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