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In the present note we obtain certain inequalities which are necessary for the equation of the title to hold for posi-
tive integral n and real a,bf and c satisfying 1 <a <b <c, and illustrate with several examples. Several preliminary 
lemmas are required. 

lemma 1. (a - 1)x + (b - 1)x -~(c- 1)x vanishes at x = n if and only if 

ax + bx-cx = Pn-rfx) 

at x = 0, 1, •-, n, where Pn„f(x) is a polynomial of degree n - / „ 

Proof. Apply the nth order difference operator An to ax+bx-cx to obtain 

An(ax +bx - cx) = fa- 1)nax + (h- 1)nbx - (c - 1)ncx , 

which vanishes a t * = 0 if and only if ax +bx - cx behaves as a polynomial of degree n - 1 d\x = Q, 1, ~-,n. 
A result in Po'lya and Szego [1] is needed for the next lemma and may be stated as follows for present purposes: 

\f a <b <c and \i i , \i2, and JJLJ are positive, then 

\x1ax +\x2bx-\x3cx 

has exactly one real simple zero. As an immediate consequence of this and other elementary considerations we have 
the following result. 

Lemma 2. Let 
fix) = ax+bx-cx , 

where 7 <a <b <&. Then r '(x) has exactly one real simple zero, one stationary point at which r ' has a positive 
maximum and to the right of which rk' is monotone decreasing. 

In the following we will always let f(x) and Pn„i(x) be as stated in Lemmas 1 and 2. 
Lemma 1 says that 

F(x) ss fM-P^jM 

has at least n + 1 zeros. That this is the exact number is assured by the next result. 
Lemma 3. F(x) = f(x) - Pn~i(x) has at most n + 1 zeros (counting multiplicity). 
Proof. Assume that F has at least n+2 zeros. Then FM has at least 2 zeros. Since P^ = 0 this implies that rn* 

has 2 zeros in contradiction to Lemma 2. 
Write 

P„~iM = c1+c2x + - + cnx
n~1 . 

Our final preliminary result may be stated as follows. 
Lemma 4. cn > 0. 
Proof We know that 

fM-Pn^M = 0 

at the n + 1 points x = 0, 1, - , n. Thus 

f(n-1)(x) = (n-1)!cn 

at two points which because of Lemma 2 implies thatcn is positive. 
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Now consider the special case when n = 2. 

Theorem 1. If fa - 1)2 + (b- I)2 -(c-1)2 = 0 then 
(1) ah/c <e

a+b~c~\ 

(2) aahb/cc > ea+b~c-1
 f 

and 
(3) aa W 2 < ea+b~c-1 . 

Proof. By the preceding lemmas we know that in Pf(x) = cj + C2X we have C2> 0, that 

ffx) = ax+bx-cx 

is monotone decreasing for all sufficiently large*, and that ffx) -Pjfx) has simple zeros at precisely x = 0, 1,2. This 
requires that f'(2) < P'j(2) and in turn f(1) > P'jfl) and f'(0) < P*j(0). In other words, using the last of the three in-
equalities, we have ln(ah/c) <c'2- ^ 2 c a n be easily determined from the coincidence of ffx) andP7(x) atx = 0, 1,2 
to give C2 = a + b - c - 1. Hence, finally, ab/c <ea+b~c~1. The inequalities (2) and (3) follow in a similar manner 
from f'(1)>P'i(1i and f'(2) < P'](2). 

Forthecaseof n = 3, the following result can be obtained by arguments similar to those used above for Theorem 1. 
The proof is therefore omitted. 

Theorem 2. If (a - 1)3 + (h- 1)2 -fc- 1)3= 0, then 
(1) ab/c > e

a+b-c-Uc* , 
(2) aabb/cc < ea+b-c~1+c* , 
(3) aa\b"/cc2 >Ba+b-c-1+2c- , 
and 
(4) aa3bb3/c°3 < ea+b-c-1+5c, # 

where 
c2 = 1/2[a2 + h2-c2+1 -2a-2b+2c]. 

Inequalities of a similar nature may be found for any given value of/?, however let us proceed to a result for arbi-
trary n. By Ln (a) we shall mean the partial sum of the first n - 1 terms of the formal Maclaurin series for log a, i.e., 

L„(a) = i : (-Dk+1 aj. 
k=1 

Theorem 3. Let (a - 1)n + (b -1f - fc - If = Q. Then 
(-If (loga + logb-log c) < f-lf[Ln(a) + Ln(b)-Ln(c)]. 

Proof. Proceeding as for Theorem 1, we find that 
(-iffW < (-1)nP'n-7(0). 

Write 
n-1 

Pn-lM = JZ °^ik} > 
k=0 

where 
x(k) = x(x-D- (x-n + 1). 

Gregory-Newton interpolation gives 
ck = Akf(0)/k! . 

Now 
A V = (a-1)kax , 

from which it follows that 

Akf(0) = (a-1)k + (b-1)k-fc~1)k . 
Therefore, since 
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x=0 
d_y(k) 

dxX 

we have 
n-1 

(-1)n(lna+lnb-lnc) < (-1)" ^{-D™ ttj^lL [(a - 1)k+ (b - 1)k - (c - 1)k ] , 
k=1 

as desired. 
We give an indication, in the following examples, of the sharpness of the inequalities obtained above. First we take 

n = 2, a = 4, b = 5, in which case inequalities (2) and (3) of Theorem 1 yield c < 6.5 and c > 5.9, respectively, brack-
eting the known solution c = 6. This example corresponds to the well-known Pythagorean triple 3,4,5which satisfies 
32 + 42 = 52. If we now take n = 3, a = 2, b = 3, then inequalities (2) and (4) of Theorem 2 give c<3.2 and c> 
3, whereas the actual solution of 

1+23-(c-1)3 = 0 
is 

c = / + \ # " - 3.08. 

The sharpness of these results seems rather surprising when one considers that they are based on such simple consid-
erations as the relative slope of two curves at their points of intersection. 
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