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Let S be a set of arbitrary cardinality. For each element s e S , define a function as:S-*Z2 by 

ui U If s^t 
ds(t)= \ l \ i s = t ' 

Denote the set of all such functions by X(S). There is obviously a 1-1 correspondence between S and X(S) by 
mapping s-+as. 

Let f:S->S be an arbitrary map. Define a map nif.'S x S-+Z2 by 

J / if f(s) = t 

and define a map f:X(S)->X(S) by 

mf(t,s) = \ . 
J 0 otherwise 

f (as)M = ] P mf(v,u)as(u) . 

U<ES 

Clearly, 
f(as) = af(s) , 

and there is a 1-1 correspondence between Ss - the set of all functions of S into itself and 

M = {mf\f^Ss 

under the mapping f-» nrif. M is actually a semigroup if we define multiplication on M by 

n)fmg(u,v) = ^ mf(ufs)mg(s,v). 

S<ES 

This semigroup is clearly isomorphic to the semigroup Ss under composition of mappings. 
With the above considerations, we can prove the following: 
Theorem Every semigroup may be embedded in a ring. 
Proof. Let G be a semigroup. It is isomorphic to a semigroup of mappings Gx on a set S, i.e., a subsemigroup of 

Ss, hence a subsemigroup of M [ 1 , p. 20]. 
If we define + and • on z f by (i'+j}(u,v)' = i(u,v)+j(u,v), 

(i°j)(u,v) = ^ P i(u,s)j(s,v). 

s<ES 

This clearly makes Zjf a ring, and M is a subsemigroup of its multiplicative semigroup. 
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