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Let S be aset of arhitrary cardinality. For each element s S, define a function a5 : S —25 by

_ Yo if s#t
aslt) = 37 i 5=¢

Denote the set of all such functions by X(S). There is obviously a 1-1 correspondence between S and X/S) by
mapping s —ag.
Let 25— be an arbitrary map. Defineamap ms:S X §—>2Z5 by
REEICE:
mlts) = l 0 otherwise

and define a map 7 :X(S)— X(S) by

flaghtv) = Z melv,ulaglu) .
ucs
Clearly, _
flas) = ags) |
and there is a 1-1 correspondence between S° = the set of all functions of S into itself and
M ={me|fe s®
under the mapping f— ms. M is actually a semigroup if we define multiplication on / by

memg(uyv) = z melu,s)mg(sy) .
sES

This semigroup is clearly isomorphic to the semigroup S° under composition of mappings.

With the above considerations, we can prove the following:

Theorem. Every semigroup may be embedded in a ring.

B‘oof. Let G be a semigroup. It is isomorphic to a semigroup of mappings G, on a set S, i.e., a subsemigroup of
S%, hence a subsemigroup of M [1, p. 20].

If we define + and - on ngs by (i +j)uv) = iluv) +jluv),

(i-iluy) = ilus)ilsy).

SES
This clearly makes Z;}SXS aring,and M isa subsemigroup of its multiplicative semigroup.
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