EMBEDDING A SEMIGROUP IN A RING

HUGOS.SUN
California State University, Fresno, California 93710

Let S be a set of arbitrary cardinality. For each element $s \in S$, define a function $a_{s}: S \rightarrow Z_{2}$ by

$$
a_{s}(t)=\left\{\begin{array}{l}
0 \text { if } s \neq t \\
1 \text { if } s=t
\end{array}\right.
$$

Denote the set of all such functions by $X(S)$. There is obviously a 1-1 correspondence between S and $X(S)$ by mapping $s \rightarrow a_{s}$.
Let $f: S \rightarrow S$ be an arbitrary map. Define a map $m_{f}: S \times S \rightarrow Z_{2}$ by

$$
m_{f}(t, s)=\left\{\begin{array}{l}
1 \text { if } f(s)=t \\
0 \text { otherwise }
\end{array},\right.
$$

and define a map $\bar{f}: X(S) \rightarrow X(S)$ by

$$
\bar{f}\left(a_{s}\right)(v)=\sum_{u \in s} m_{f}(v, u) a_{s}(u) .
$$

Clearly,

$$
\bar{f}\left(a_{s}\right)=a_{f(s)},
$$

and there is a 1-1 correspondence between $S^{s}=$ the set of all functions of S into itself and

$$
M=\left\{m_{f} \mid f \in S^{s}\right.
$$

under the mapping $f \rightarrow m_{f} . M$ is actually a semigroup if we define multiplication on M by

$$
m_{f} m_{g}(u, v)=\sum_{s \in S} m_{f}(u, s) m_{g}(s, v)
$$

This semigroup is clearly isomorphic to the semigroup S^{s} under composition of mappings.
With the above considerations, we can prove the following:
Theorem. Every semigroup may be embedded in a ring.
Proof. Let G be a semigroup. It is isomorphic to a semigroup of mappings G_{x} on a set S, i.e., a subsemigroup of S^{S}, hence a subsemigroup of $M[1, \mathrm{p} .20]$.
If we define + and \cdot on $Z_{2}^{S \times S}$ by $(i+j)(u, v)=i(u, v)+j(u, v)$,

$$
(i \cdot j)(u, v)=\sum_{s \in S} i(u, s) j(s, v) .
$$

This clearly makes $Z_{2}^{S \times S}$ a ring, and M is a subsemigroup of its multiplicative semigroup.

REFERENCES

1. E.S. Liapin, "Semigroups," A.M.S. Translations of Mathematical Monographs, Vol. 3, 1963.
2. E.S. Liapin, "Representations of Semigroups by Partial Mappings," A.M.S. Transl. (2) 27 (1963), pp. 289-296.
