ON NON-BASIC TRIPLES

NORMAN WOO

California State University, Fresno, California 93710

Definition 1. A set of integers $\left\{b_{i}\right\}_{i} \geqslant 1$ will be called a base for the set of all integers whenever every integer n can be expressed uniquely in the form

$$
n=\sum_{i=1}^{\infty} a_{i} b_{i}
$$

where $a_{i}=0$ or 1 and

$$
\sum_{i=1}^{\infty} a_{i}<\infty
$$

Thus, a base is obtained by taking $b_{i}= \pm 2^{i}$ for each i so long as terms of each sign are used infinitely often. Also, a sequence $\left\{d_{i}\right\}_{i} \geqslant 1$ of odd numbers will be called basic whenever the sequence

$$
\left\{d_{i} 2^{i-1}\right\} i \geqslant 1
$$

is a base. If the sequence $\left\{d_{i}\right\}_{i} \geqslant 1$ of odd integers is such that $d_{i+s}=d_{i}$ for all i 's, then the sequence is said to be periodic $\bmod s$ and is denoted by $\left\{d_{1}, d_{2}, d_{3}, \cdots, d_{s}\right\}$.
Theorem 1. A basic sequence remains basic whenever a finite number of odd numbers is added, omitted, or replaced by other odd numbers.
Proof. This is proved in [1].
Theorem 2. A necessary and sufficient condition for the sequence $\left\{d_{i}\right\}_{i} \geqslant 1$ of odd integers, which is periodic $\bmod s$, to be basic is that

$$
0 \neq \sum_{i=1}^{m} a_{i} 2^{i-1} d_{i} \equiv 0\left(\bmod 2^{n s}-1\right)
$$

is impossible for $n \geqslant 1$, and $a_{i}=0$ or 1 for all $i \geqslant 1$.
Proof. This is also proved in [1].
Theorem 3. Let a, b, c be a periodic $\bmod 3$. If $a=d\left(2^{3 K}+1\right)$, where d is an integer and
or
(2)
or
(3)
or
(4)
or
(5)
or
(6)
then a, b, c is non-basic.

$$
\begin{aligned}
& d+2 b+4 c \equiv 0(\bmod 7), \\
& b+2 d+4 c \equiv 0(\bmod 7), \\
& c+2 d+4 b \equiv 0(\bmod 7), \\
& c+2 b+4 d \equiv 0(\bmod 7), \\
& d+2 c+4 b \equiv 0(\bmod 7), \\
& b+2 c+4 d \equiv 0(\bmod 7), \\
& 56
\end{aligned}
$$

Proof. In case (1) holds, consider the expression

$$
\begin{aligned}
u & =a+2 b+2^{2} c+\cdots+2^{3 K-3} a+2^{3 K-2} b+2^{3 K-1} c+2^{3 K+1} b+2^{3 K+2} c+\cdots+2^{6 K-2} b+2^{6 K-1} c \\
& =a\left(1+2^{3}+\cdots+2^{3 K-3}\right)+2 b\left(1+2^{3}+\cdots+2^{6 K-3}\right)+2^{2} c\left(1+2^{3}+\cdots+2^{6 K-3}\right) \\
& =a \cdot \frac{2^{3 K-1}}{2^{3}-1}+2 b \cdot \frac{2^{6 K-}-1}{2^{3}-1}+2^{2} c \cdot \frac{2^{6 K}-1}{2^{3}-1} \\
& =d\left(2^{3 K}+1\right) \cdot \frac{2^{3 K}-1}{2^{3}-1}+2 b \cdot \frac{2^{6 K}-1}{2^{3}-1}+2^{2} c \cdot \frac{2^{6 k}-1}{2^{3}-1}=\frac{\left(d+2 b+2^{2} c\right)\left(2^{6 K}-1\right)}{2^{3}-1}
\end{aligned}
$$

It follows that u is divisible by $2^{6 K}-1$ since, by hypothesis,

$$
\left(2^{3}-1\right) \mid\left(d+2 b+2^{2} c\right)
$$

Hence, by applying Theorem 2 with $n=3$ and $s=2 k,\{a, b, c\}$ is not basic.
Suppose now that (2) holds and that $\{a, b, c\}$ is basic. By Theorem 1, we may interchange a with b the first $3 K$ times these numbers appear in the sequence $\{a, b, c\}$ and still have a basic sequence. Consider

$$
\begin{aligned}
v & =b+2 a+2^{2} c+\cdots+2^{3 K-3} b+2^{3 K-2} a+2^{3 K-1} c+2^{3 K} b+2^{3 K+2} c+\cdots+2^{6 K-3} b+2^{6 K-1} c \\
& =b\left(1+2^{3}+\cdots+2^{6 K-3}\right)+2 a\left(1+2^{3}+\cdots+2^{3 K-3}\right)+2^{2} c\left(1+2^{3}+\cdots+2^{6 K-3}\right)
\end{aligned}
$$

As above, this reduces to

$$
v=\frac{\left(b+2 d+2^{2} c\right)\left(2^{6 K}-1\right)}{2^{3}-1}
$$

and since $\left(2^{3}-1\right) \mid\left(b+2 d+2^{2} c\right), v$ is divisible by $2^{6 K}-1$. But then, as before $\{a, b, c\}$ is not basic.
The remaining cases are handled in the same way, with an appropriate permutation of the first few terms in the sequence $\{a, b, c\}$ and so the proof is complete.
Theorem 4. Let

$$
a=\frac{e\left(2^{6 K}-1\right)}{2^{2 K}-1} \quad \text { and } \quad b=\frac{d\left(2^{6 K}-1\right)}{2^{3 K}-1}
$$

where e and d are integers, $K \neq 0$, and $3 / K_{k}$ If $e+2 d+2^{2} c$ is divisible by 7 , then $\{a, b, c\}$ is non-basic.
Proof. Consider the expression
$w=a+2 b+2^{2} c+\cdots+2^{2 K-3} a+2^{2 K-2} b+2^{2 K-1} c+2^{2 K+1} b+2^{2 K+2} c+\cdots+2^{3 K-2} b+2^{3 K-1} c+\cdots+2^{6 K-1} c$
$=a\left(1+2^{3}+\cdots+2^{2 K-3}\right)+2 b\left(1+2^{3}+\cdots+2^{3 K-3}\right)+2^{2} c\left(1+2^{3}+\cdots+2^{6 K-3}\right)$
$=a \cdot \frac{\left(2^{2 K}-1\right)}{2^{3}-1}+2 b \cdot \frac{\left(2^{3 K}-1\right)}{2^{3}-1}+2^{2} c \cdot \frac{\left(2^{6 K}-1\right)}{2^{3}-1}$
$=e \cdot \frac{\left(2^{6 K}-1\right)}{2^{2 K}-1} \cdot \frac{\left(2^{2 K}-1\right)}{2^{3}-1}+2 d \cdot \frac{\left(2^{6 K}-1\right)}{2^{3 K}-1} \cdot \frac{\left(2^{3 K}-1\right)}{2^{3}-1}+2^{2} c \cdot \frac{\left(2^{6 K}-1\right)}{2^{3}-1}=\frac{\left(e+2 d+2^{2} c\right)\left(2^{6 K}-1\right)}{2^{3}-1}$.
Since $e+2 d+2^{2} c$ is divisible by $7, w$ is divisible by $2^{6 K}-1$, and $\{a, b, c\}$ is non-basic by Theorem 2 .
Theorem 5. Let

$$
a=e \cdot \frac{\left(2^{6 K}-1\right)}{2^{3 K}-1} \quad \text { and } \quad b=d \cdot \frac{\left(2^{6 K}-1\right)}{2^{3 K}-1},
$$

where e and d are integers, $K \neq 0,3 / K$. If

$$
e+2 d+2^{2} c
$$

is divisible by 7 , then $\{a, b, c\}$ is non-basic.
Proof. This time we set

$$
\begin{aligned}
v & =a+2 b+2^{2} c+\cdots+2^{3 K-3} a+2^{3 K-2} b+2^{3 K-1} c+2^{3 K+2} c+\cdots+2^{6 K-1} c \\
& =a\left(1+2^{3}+\cdots+2^{3 K-3}\right)+2 b\left(1+2^{3}+\cdots+2^{3 K-3}\right)+2^{2} c\left(1+2^{3}+\cdots+2^{6 K-3}\right) \\
& =a \cdot \frac{2^{3 K}-1}{2^{3}-1}+2 b \cdot \frac{2^{3 K}-1}{2^{3}-1}+2^{2} c \cdot \frac{2^{6 K}-1}{2^{3}-1} \\
& =e \cdot \frac{2^{6 K}-1}{2^{3 K}-1} \cdot \frac{2^{3 K}-1}{2^{3}-1}+2 d \cdot \frac{2^{6 K}-1}{2^{3 K}-1} \cdot \frac{2^{3 K}-1}{2^{3}-1}+2^{2} c \cdot \frac{2^{6 K}-1}{2^{3}-1} \\
& =\frac{\left(e+2 d+2^{2} c\right)\left(2^{6 K}-1\right)}{2^{3}-1}
\end{aligned}
$$

Since

$$
e+2 d+2^{2} c
$$

is divisible by $7, v$ is divisible by $2^{6 K}-1$ and as before $\{a, b, c\}$ is non-basic. In a similar way, we obtain the following theorem.
Theorem 6. Let

$$
a=\frac{e\left(2^{6 K}-1\right)}{2^{2 K}-1} \quad \text { and } \quad b=\frac{d\left(2^{6 K}-1\right)}{2^{2 K}-1},
$$

where e and d are integers, $K \neq 0,3 / k$. If

$$
e+2 d+2^{2} c
$$

is divisible by 7 , then $\{a, b, c\}$ is non-basic.
Other similar interesting results may be found in another article in [2].

REFERENCES

1. N.G. deBruijn, "On Bases for the Set of Integers," Publ. Math., Debrecen, 1 (1950), pp. 232-242.
2. C.T. Long and N. Woo, "On Bases for the Set of Integers," Duke Math. Journal, Vol. 38, No. 3, Sept. 1971, pp. 583-590.
**
