ON NON-BASIC TRIPLES

NORMAN WOO

California State University, Fresno, California 93710

Definition 1. A set of integers $\{b_i\}_i \ge 1$ will be called a base for the set of all integers whenever every integer n can be expressed uniquely in the form

$$n = \sum_{j=1}^{\infty} a_j b_j ,$$

where $a_i = 0$ or 1 and

$$\sum_{j=1}^{\infty} a_j < \infty$$

Thus, a base is obtained by taking $b_i = \pm 2^i$ for each *i* so long as terms of each sign are used infinitely often. Also, a sequence $\begin{cases} d_i \\ i \end{cases} > 1$ of odd numbers will be called basic whenever the sequence

$$\left\{d_i 2^{i-1}\right\} i \ge 1$$

is a base. If the sequence $\{d_i\}_i \ge 1$ of odd integers is such that $d_{i+s} = d_i$ for all *i*'s, then the sequence is said to be periodic mod s and is denoted by $\{d_1, d_2, d_3, \dots, d_s\}$.

Theorem 1. A basic sequence remains basic whenever a finite number of odd numbers is added, omitted, or replaced by other odd numbers.

Proof. This is proved in [1].

Theorem 2. A necessary and sufficient condition for the sequence $\{d_i\}_i \ge 1$ of odd integers, which is periodic mod s, to be basic is that

$$0 \neq \sum_{i=1}^{m} a_i 2^{i-1} d_i \equiv 0 \pmod{2^{ns} - 1}$$

is impossible for $n \ge 1$, and $a_i = 0$ or 1 for all $i \ge 1$.

Proof. This is also proved in [1].

Theorem 3. Let a, b, c be a periodic mod 3. If $a = d(2^{3K} + 1)$, where d is an integer and

then	a,b,c	is non-basic.	56
or (6)			$b + 2c + 4d \equiv 0 \pmod{7}$,
or (5)			$d+2c+4b \equiv 0 \pmod{7},$
(4)			$c + 2b + 4d \equiv 0 \pmod{7}$,
(3)			$c+2d+4b \equiv 0 \pmod{7},$
(2)			$b + 2d + 4c \equiv 0 \pmod{7}$,
(1) or			$d+2b+4c \equiv 0 \pmod{7},$

ON NON-BASIC TRIPLES

Proof. In case (1) holds, consider the expression

$$\begin{aligned} u &= a + 2b + 2^{2}c + \dots + 2^{3K-3}a + 2^{3K-2}b + 2^{3K-1}c + 2^{3K+1}b + 2^{3K+2}c + \dots + 2^{6K-2}b + 2^{6K-1}c \\ &= a(1+2^{3}+\dots+2^{3K-3}) + 2b(1+2^{3}+\dots+2^{6K-3}) + 2^{2}c(1+2^{3}+\dots+2^{6K-3}) \\ &= a \cdot \frac{2^{3K-1}}{2^{3}-1} + 2b \cdot \frac{2^{6K-1}}{2^{3}-1} + 2^{2}c \cdot \frac{2^{6K}-1}{2^{3}-1} \\ &= d(2^{3K}+1) \cdot \frac{2^{3K}-1}{2^{3}-1} + 2b \cdot \frac{2^{6K}-1}{2^{3}-1} + 2^{2}c \cdot \frac{2^{6K}-1}{2^{3}-1} = \frac{(d+2b+2^{2}c)(2^{6K}-1)}{2^{3}-1} \\ &= d(2^{3K}+1) \cdot \frac{2^{3K}-1}{2^{3}-1} + 2b \cdot \frac{2^{6K}-1}{2^{3}-1} + 2^{2}c \cdot \frac{2^{6K}-1}{2^{3}-1} = \frac{(d+2b+2^{2}c)(2^{6K}-1)}{2^{3}-1} \\ &= d(2^{3K}+1) \cdot \frac{2^{3K}-1}{2^{3}-1} + 2b \cdot \frac{2^{6K}-1}{2^{3}-1} + 2^{2}c \cdot \frac{2^{6K}-1}{2^{3}-1} = \frac{(d+2b+2^{2}c)(2^{6K}-1)}{2^{3}-1} \\ &= d(2^{3K}+1) \cdot \frac{2^{3K}-1}{2^{3}-1} + 2b \cdot \frac{2^{6K}-1}{2^{3}-1} + 2^{2}c \cdot \frac{2^{6K}-1}{2^{3}-1} = \frac{(d+2b+2^{2}c)(2^{6K}-1)}{2^{3}-1} \\ &= d(2^{3K}+1) \cdot \frac{2^{3K}-1}{2^{3}-1} + 2b \cdot \frac{2^{6K}-1}{2^{3}-1} + 2^{2}c \cdot \frac{2^{6K}-1}{2^{3}-1} = \frac{(d+2b+2^{2}c)(2^{6K}-1)}{2^{3}-1} \\ &= d(2^{3K}+1) \cdot \frac{2^{3K}-1}{2^{3}-1} + 2b \cdot \frac{2^{6K}-1}{2^{3}-1} + 2^{2}c \cdot \frac{2^{6K}-1}{2^{3}-1} = \frac{(d+2b+2^{2}c)(2^{6K}-1)}{2^{3}-1} \\ &= d(2^{3K}+1) \cdot \frac{2^{3K}-1}{2^{3}-1} + 2b \cdot \frac{2^{6K}-1}{2^{3}-1} + 2^{2}c \cdot \frac{2^{6K}-1}{2^{3}-1} = \frac{(d+2b+2^{2}-1)(2^{6K}-1)}{2^{3}-1} \\ &= d(2^{3K}+1) \cdot \frac{2^{3K}-1}{2^{3}-1} + 2b \cdot \frac{2^{6K}-1}{2^{3}-1} + 2^{2}c \cdot \frac{2^{6K}-1}{2^{3}-1} = \frac{(d+2b+2^{2}-1)(2^{6K}-1)}{2^{3}-1} \\ &= d(2^{3K}+1) \cdot \frac{2^{3K}-1}{2^{3}-1} + 2b \cdot \frac{2^{6K}-1}{2^{3}-1} + 2^{2}c \cdot \frac{2^{6K}-1}{2^{3}-1} = \frac{(d+2b+2^{2}-1)(2^{6K}-1)}{2^{3}-1} \\ &= d(2^{3K}+1) \cdot \frac{2^{3K}-1}{2^{3}-1} + 2b \cdot \frac{2^{3K}-1}{2^{3}-1} + 2^{3K}-1} \\ &= d(2^{3K}+1) \cdot \frac{2^{3K}-1}{2^{3}-1} + 2b \cdot \frac{2^{6K}-1}{2^{3}-1} + 2^{3K}-1} + 2^{3K}-1} \\ &= d(2^{3K}+1) \cdot \frac{2^{3K}-1}{2^{3}-1} + 2^{3K}-1} \\ &= d(2^{3K}+1) \cdot \frac{2^{3K}-1}{2^{3K}-1} + 2^{3K}-1} \\ &= d(2^{3K}+1) \cdot \frac{2^{3K}-$$

It follows that u is divisible by $2^{6K} - 1$ since, by hypothesis,

$$(2^3 - 1) | (d + 2b + 2^2c).$$

Hence, by applying Theorem 2 with n = 3 and s = 2k, $\{a,b,c\}$ is not basic. Suppose now that (2) holds and that $\{a,b,c\}$ is basic. By Theorem 1, we may interchange a with b the first 3K times these numbers appear in the sequence $\{a,b,c\}$ and still have a basic sequence. Consider

$$\begin{split} v &= b + 2a + 2^2 c + \dots + 2^{3K-3} b + 2^{3K-2} a + 2^{3K-1} c + 2^{3K} b + 2^{3K+2} c + \dots + 2^{6K-3} b + 2^{6K-1} c \\ &= b(1 + 2^3 + \dots + 2^{6K-3}) + 2a(1 + 2^3 + \dots + 2^{3K-3}) + 2^2 c(1 + 2^3 + \dots + 2^{6K-3}). \end{split}$$

As above, this reduces to

$$v = \frac{(b+2d+2^2c)(2^{6K}-1)}{2^3-1}$$

and since $(2^3 - 1) | (b + 2d + 2^2c)$, v is divisible by $2^{6K} - 1$. But then, as before $\{a,b,c\}$ is not basic. The remaining cases are handled in the same way, with an appropriate permutation of the first few terms in the sequence $\{a, b, c\}$ and so the proof is complete.

Theorem 4. Let

$$a = \frac{e(2^{6K} - 1)}{2^{2K} - 1}$$
 and $b = \frac{d(2^{6K} - 1)}{2^{3K} - 1}$

where e and d are integers, $K \neq 0$, and 3/K. If $e + 2d + 2^2c$ is divisible by 7, then $\{a,b,c\}$ is non-basic. Proof. Consider the expression

$$\begin{split} & w = a + 2b + 2^2 c + \dots + 2^{2K-3} a + 2^{2K-2} b + 2^{2K-1} c + 2^{2K+1} b + 2^{2K+2} c + \dots + 2^{3K-2} b + 2^{3K-1} c + \dots + 2^{6K-1} c \\ & = a(1 + 2^3 + \dots + 2^{2K-3}) + 2b(1 + 2^3 + \dots + 2^{3K-3}) + 2^2 c(1 + 2^3 + \dots + 2^{6K-3}) \\ & = a \cdot \frac{(2^{2K} - 1)}{2^3 - 1} + 2b \cdot \frac{(2^{3K} - 1)}{2^3 - 1} + 2^2 c \cdot \frac{(2^{6K} - 1)}{2^3 - 1} \\ & = e \cdot \frac{(2^{6K} - 1)}{2^{2K}} \cdot \frac{(2^{2K} - 1)}{2^3} + 2d \cdot \frac{(2^{6K} - 1)}{2^{3K}} \cdot \frac{(2^{3K} - 1)}{2^3} + 2^2 c \cdot \frac{(2^{6K} - 1)}{2^3} = \frac{(e + 2d + 2^2 c)(2^{6K} - 1)}{2^3} \\ & \quad . \end{split}$$

 $\frac{2^{3}}{2^{2K}-1} = \frac{2^{3}-1}{2^{3}-1} =$ Theorem 5. Let

$$a = e \cdot \frac{(2^{6K} - 1)}{2^{3K} - 1}$$
 and $b = d \cdot \frac{(2^{6K} - 1)}{2^{3K} - 1}$

where e and d are integers, $K \neq 0$, 3/K. If

 $e + 2d + 2^{2}c$

is divisible by 7, then $\{a,b,c\}$ is non-basic. *Proof.* This time we set

ON NON-BASIC TRIPLES

$$\begin{aligned} v &= a + 2b + 2^2c + \dots + 2^{3K-3}a + 2^{3K-2}b + 2^{3K-1}c + 2^{3K+2}c + \dots + 2^{6K-1}c \\ &= a(1 + 2^3 + \dots + 2^{3K-3}) + 2b(1 + 2^3 + \dots + 2^{3K-3}) + 2^2c(1 + 2^3 + \dots + 2^{6K-3}) \\ &= a \cdot \frac{2^{3K} - 1}{2^3 - 1} + 2b \cdot \frac{2^{3K} - 1}{2^3 - 1} + 2^2c \cdot \frac{2^{6K} - 1}{2^3 - 1} \\ &= e \cdot \frac{2^{6K} - 1}{2^{3K} - 1} \cdot \frac{2^{3K} - 1}{2^3 - 1} + 2d \cdot \frac{2^{6K} - 1}{2^{3K} - 1} \cdot \frac{2^{3K} - 1}{2^3 - 1} + 2^2c \cdot \frac{2^{6K} - 1}{2^3 - 1} \\ &= \frac{(e + 2d + 2^2c)(2^{6K} - 1)}{2^3 - 1} \\ \end{aligned}$$

Since

.

 $e + 2d + 2^2c$

is divisible by 7, v is divisible by $2^{6K} - 1$ and as before $\{a,b,c\}$ is non-basic. In a similar way, we obtain the following theorem.

Theorem 6. Let

$$a = \frac{e(2^{6K} - 1)}{2^{2K} - 1}$$
 and $b = \frac{d(2^{6K} - 1)}{2^{2K} - 1}$

where e and d are integers, $K \neq 0$, 3/k. If

is divisible by 7, then $\{a,b,c\}$ is non-basic. Other similar interesting results may be found in another article in [2].

REFERENCES

- 1. N.G. deBruijn, "On Bases for the Set of Integers," Publ. Math., Debrecen, 1 (1950), pp. 232-242.
- 2. C.T. Long and N. Woo, "On Bases for the Set of Integers," Duke Math. Journal, Vol. 38, No. 3, Sept. 1971, pp. 583-590.
