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Consider the general power series: 

(1) fM = £ an*n 

n=0 

(de f inedfor some radius of convergence /?, whenever |x| < R). 
I t is desired t o f i nd an expression, preferably in terms of f(x), fo r the so-called mul t isect ing generating f u n c t i o n , def in-

ed as f o l l ows : 
oo 

(2) g(r.S,x) = Yi anr+s*nr+S 

n=0 

(where r and s are integers sat isfying 0 < s < r ) . 
We shall suppose that f(x), and therefore g(rfs,x) satisfy appropr iate convergence requirements, so tha t the fo l l ow ing 

development may have va l id i ty . 
The prob lem indicated above has been solved by various investigators, f o r certain special cases. For example, Gould [ 1 ] 

has obtained the fo l l ow ing results, f o r the case where a n = Fn ( the /7 f / ? Fibonacci number ) : 

F Xs + (-1)sF xr+s 

(3) fM - Y, Fn*" - — ^ ; 9<r, s. x) - £ W " * " ' ' ™ 
n=0 1-x-x2

 n=0 1-Lrx
r + (-1)rx2r 

Also, Hoggatt and Anaya, in a recent j o i n t paper [ 2 ] , derived a comparable relat ion fo r the co lumn generators of 
Pascal's lef t - just i f ied tr iangle. Ac tua l l y , the de f in i t i on of the mul t isect ing generating f unc t i on of fix) used by these 
wr i ters was the f o l l o w i n g : 

<4> h(r,s,x) = J2 anr+sx
n -

n=0 

The modification of the latter definition given by (2) is slight, sinceg(r,s,x) andh(r,s,x) are related as follows: 
(5) g(r,s,x). = xsh(r,s,xr) . 

For the purposes of this paper, Eq. (2) is a more convenient definition. 

~ | / if n =. 
g(r,s,x) = 2^ anQ(n,r,s)xn, where Q(n,r,s) = < Q o tner 

n=0 i 

= s (mod r) 
(6) g(r,s,x) = 2 ^ anQ(n,r,s)xn, where 6(n,r,s) = \ Q otherwise 

n=0 

This is evident from the definition of g(r, s, x) in (2). Another evident relation is: 
r-1 

<7> fM = lL9<r<s>x}' 
s=0 
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What is needed is an explicit expression for Q(n,r,s). Such an expression is conveniently provided by the following 
function: 

1 £L / io, -/ Q(n-s)2kTrl 1 

(8) 0(n,r,s) = 1~Y e("^^kin/r = e - 7 (provided njksfmodr) ) . 
k=0 r 

i e (n~s)2kiri/r _ A 

If n = s + mr, for some integer m, then e
fn's^2k7T,/r = e2mkm = ^ | n t h j s event, 0//7, r, sj = r/r = . I On the other 

hand, if n £s (mod r), the numerator of the second expression in (8) vanishes, but the denominator does not; i.e., 
0(n, r, s) = Q. Thus, d(n,r,s) as defined in (8) has the desired properties we are seeking for this function. Accordingly, 

g(rfs,x) = £ anx
n i £ e(ns)2k«i/r 

n=0 k=0 

J2 an{e
2k"i/rx}n = IJ2 e-2Mf(e2k*i/rx). [ V 0-2skm/r V a i 02kw/rv\n = f_\^ 0-2skiri/rffa2km/rv 

r-7 oo r-1 

e~ 

k=0 n=0 k=0 

We may make a further simplification, by letting w(r,k) = e2k7T//r, the (k+1)th rth root of unity. We note that 

w(r,k) = Jivfr, 1)\k; 

if we let wr denote w(r,1), then our relation takes the following form: 
r-1 

(9) gfr,s,x) = 1
TY.w^SkMx) . 

k=0 
This is the general expression we are seeking. Any further simplification will depend on the particular values of r 

and 5, and on the specific form of f(x). Indicated below are several special cases of (9) for the first few values of r 
and $, but for perfectly general fix): 

g(hO,x) = f(x), g{2,0,x) = %\f(x) + H-x)}, g(2,1,x) = % {ffx) -f(-x)) . 

g(3,0,x) = t{f(x) + f(ux) + f(u2x)} {where u = %(-1 + is/3')), g(3, 1,x) = 1-{f(x)+ u2f(ux)+ uf(u2x)\ , 

(10) g(i2,x) = 1 { f(x) + uf(ux) +• u2f(u2x) } , g(4, 0,x) = 1- { ffx) + f(ix) + f(-x) + f(-ix)} , 

g(4, 1,x) = L\f(x)>~if(ix)-f(~x) + if(-ix)} , g(4,2,x) = J- { ffx) - f(ix) + ff-x) - f(-ix) } , 

g(4,3, x) = 1-\ ffx) + If fix) - ff-x) - iff-ix)} . 

Note that the coefficients w~r are themselves rth roots of unity, in permuted order (but with unity itself always 
first). If we sum g(r, $, x) over s, keeping k fixed, the sum of these coefficients vanishes, except for k = 0, where it is 
unity. This is in accordance with our expected result in (7). 

Many interesting special cases of (9) exist, and have been extensively studied, for specific functions ffx). For exam-
pie, if ffx) = ex', Eq. (9) yields the following: 

(ID ^^-E^-fZ^^ • 
n=0 k=0 

This may be further simplified and expressed as a strictly real function, involving trigonometric terms, but we will 
not do this here. It will suffice to say that the general form of (9) possesses an intrinsic symmetry which further 
manipulation tends to eliminate. For example, using identity (11), 

g(3,0,x) = L{e* + eu* + if2*) , 
where u is as defined in (10); however, we may also express g(3, 0, x) in real form: 

g(3,0,x) = 1j{ex + 2e^1/2X cos(1/2Xsj3)} , 

which is not as elegant a result as (11). Similarly, many special cases of (9) may be verified by the interested reader; 
it is the writer's opinion, nevertheless, that (9) possesses a special elegance just as it stands, limited though its practi-
cal usefulness may be. 
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A FORMULA FOR .4* fa) 
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This paper is a follow-up of [1 ] , which dealt with certain combinatorial coefficients denoted by the symbol An(x). 
We begin by recalling the definition oiAn(x), which was given in [1 ] : 

oo n 

(1) (1-ur1(1 + u)x = ] T An(x)if; therefore, An(x) = £ ( / * ) , 
h=0 i=0 

which is a polynomial in x. In [1 ] , the writer indicated that he had found the first few terms in the combinatorial 
expansion tor A2(x), but was unable to obtain the general expansion. Formula (78) in [1] gave the first few terms 
of the expression, derived by direct expansion: 

«> *<*>- U")ju)*^(2/-,) * ( ^ f ^ ) ( 2n-2y-\ • 
The problem of obtaining the general term of the polynomial A2(x) has now been resolved. However, the expres-

sion is in the form of an iterated summation, which is indicated below: 
n 2n n j+n-i 

(3) ^ - E ^ h E ( ; ) E ( ; ) E ( i ) fn~ 1.2,3..-) 
i=0 i=n+1 ' j=i-n k=0 

Perhaps some interested reader can reduce this expression to a simpler one, involving only two (or possibly one) 
summation variables. If we denote the coefficient of I * j as 0,-, relation (3) above yields the following values: 

e2n ={2
n"); e2n.f - <*LZM n(n+2); e2n.2 - J ^ f y^+2n2+3n_4) 

(these last three values may be compared with those in (2)); 

e2n-3-^^yn4
 + n3-i-8n2

 + 2n-24); 

also, en+1 = 3n+1-2.2n+1 + 1n+1; Qn+2 = 3n+2-2-2n-h2+1n+2-(n+2)(2n+2-1) + (n+2)2 . 

In attempting to discover the law of formation of 0; for/ > /?, it is clear that increasing difficulty is encountered as 
one recedes from either end of the second (iterated) summation in the right member of (3). Possibly, 0/ may be con-
cisely expressed in terms of a finite difference operator, but this approach has not yet been fully explored. 

A proof of (3) follows. The proof hinges on a formula due to Riordan, indicated as formula (6.44) in [2 ] . This 
formula is as follows: 

«*» i{n
k)(

m:-;k){m/n-*)= U ) m -
k=0 

A slightly more convenient form of (4) is obtained by the substitution i = m + n - k, also observing that the upper 
limit in (4) need only equal min (m,n), since subsequent terms vanish. Then (4) takes the following form: 

m+n m+n 

» ( ; ) ( ; ) - S ,(7)U)('=")- S (;)(:)(-"-) • 
j=max (m,n) i=max (m,n) 


