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1. We shall make use of the notation of [1 ] . In addition we define 

(1.1) feW - 4>n(M) = E [n~k
k~ ' ~}qk2an~2k-1 (n > 1). 

2k<n 
Since 

[ \ - * ] - r "£ ' , ] -^ i : , , *V ] -
it is clear that 

rh / . I ^ / 0 i _ V lrn-k-\ rn - k - 1i \ „k2 n-2k \ ^ nn-2k r n - k - 1 -i nk
2 n-2k 

4>„+lM-a<l>nM ~ Ij [I k ] " l k 2jg a = 2^ V L * - / J * * 
2k <n 0<2k<n 

= dn~1 E [n-k_-1]q(k-1l'an-2k = qn-1yE, [ " " 1 "2^^2k'2 . 
0<2k<n 2k<n-1 

Hence 
(1.2) <t>n+l(a)-a<t>n(a) = qn'1 <t>n-l(a) (n > 1). 

The first few values of <t>n(a) are easily computed by means of (1.1) or (1.2). 
<S>l(a) = 1, <t>2(a) = a, (/)3(a) = a2 + q, <t>4(a) = a3 + q(1+q)a, 

<p5(a) = a4 + q(1+q+q2)a2 + q4, Ma) = a5 + q( 1+q+q2+ q2)a3 + q4(1+q + q2)a . 

<t>7(a) = a6 + q(1+q + q2 + q3 + q4)a4 + q4(1+q+q2)(1+q2)a2 + q9 . 

If we put (j)0(a) = 0 then (1.2) holds for all n > I By means of (1.2) we can define(pn(a) for all integral n. It is 
convenient to put __ 
(1.3) <t>n(a) = <t>n(a,q) = (-Un~1<l>-„(a). 
Then (1„2) becomes 
(1.4) Qn(a) = qn(a$n„1(a) + $n^2(a)) (n>2), 
where 
(1.5) $0(a) = 0, fjM = q . 

The next few values of (f>n (a) are 
$2M = q3*, $3(a) * q4(1+q2a2), $4(a) = q7((1 + q)a+q3a3), 

$5M = q9a + (q2 + q3 + q4)a2+q6a4), 

$6<a> = q13((1 + q+q2)a + (q3 + q4 + q5 + q6 )a3 + q8 a5). 
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Put 

(1.6) 

Then by (1.4) and (1.5), 

so that 
(1.7) 
Thus 

<$>(a,x) = Yl <Pn(a)xn . 
n=0 

®(a,x) = qx + Yj qn(a$n-l(a) + $n-2(a))xn , 
n=2 

&(a,x) = qx + qx(a + qx)&(a, qx). 

<&(a,x) = qx + qx(a + qx) \ q2x + q2x(a + q2x)$(a, q2x) \ 

= qx + q3x2(a + qx) + q3 x2 (a + qx)(a + q2x)®(a,q2x). 

Continuing in this way we get 

(1.8) 

Since 

(1.8) becomes 

WW* = Z qm+1)(k+2)xk+1(a+qx)<a+q2x)...(a+qkx). 
k=0 

k 
(a + qx)(a2 + qx)-(a2 + qkx) = £ [ * > % Y y > V " V , 

1=0 

k 
®(a>x> = E qm+1)(k+2)xk+1 YLj¥/2j0H)ak~J'xJ 

k=0 j=0 

It follows that 

(1.9) 

Since 

it is clear that 

that is, 
(1.10) 

2. It is evident that 
(2.1) 
Also it follows from 

that 
(2.2) 

= y xn+1 Y* [n~J'l qY2i{i+1)+y2{n"s+1^n'"l+2)an'2i 

n=0 2/<n 

$n+rM= Z [n-i-jq
y*<n+1>ln+2>-nM<i-1>a2n-i . 

2j<n 

W ^ = E [nJJ]fPan-2i, 
2/<n 

j>nH(a) = qn+1<t>n(q
ln+1>/2a), 

QnM = qn<j>n(q
n/2a) . 

Fn(q) = 4>JU)-

2k<n 

F'n(q) = qn<pn(q-1,q). 
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We have defined [1] the q-Lucas number 

(2-3) Ln(qJ = Fn+2(q)-qnF'n„2(q). 
Hence, by (2.1) and (2.2), 
(2-4) Ln(q) = <pn+2(W-q2<Pn-2(q~7,q)-

In the next place put 
(2.5) Ma) = ^(a,q) = <Pn(a,q~11 
When q is replaced by q~1, it is easily verified that 

99 

Hence 
rh (* n~1 J - Y ^ r n ~ k 1 „k2-nk n-2k 
<Pn+i(a,q / - Z^ I k JQ a 

2k<n 
so that 
(2.6) qn2/2<t>?,+i(a,q) = <t>n+1(aq"n/2

f q). 
In particular we have 
(2.7) qn2/2Fn+1(q'1) = (j>n+i(q~n/2, q) 
and 
(2.8) c,y>("Hl)F>n<q-

1) = <Pn(g'A(nH>,q). 

3. Returning to the recurrence (1.2), we have 

(3.1) a(j)n(a) = (t>n+1(a)-qn'1(!)n.1(a). 
Thus 

a2(Pn(a) = <t>n+2(a)-(1+q)qn~1<i>n(a)+q2n~3<t>n-2(a) 
and 

a3cpn(a) = (pn+3(a) - (1+q+q2)qn'7 c/)nH(a) + (1+q+q2)q2n~2(pn-1(a) - q3n'6(/)n^3(a). 

This suggests the general formula 

(3.2) akd>n(a) = £ (-V [*yn-m+1)4>„Hc-yM , 

where k >Obu\n is an arbitrary integer. 
Clearly (3.2) holds for k = 0, 1,2,3. Assuming that it holds up to and including the value A, we have, by (3.1) 

°k+1*nM = E ( - D ' t f y n - W { <Pn+k-2j+i(a)-qn+k-2H<l>n+k-2H(a)\ 
1=0 

= ib (-»ji*y^m+i)<i>nHc-*«M 
j=0 

k+1 
+ E '-1)iii~ll qin-~m+1)+k'M<t>n+k-2i+l(a) 

i=i 

•1 

T, <-'>'{ [ / * ] * [ / - / ] qH+1}qin'V3J(M)(t>n+k-2i+l(a) 

i=i 

k+1 

1=0 

k+1 

1=0 

This completes the proof of (3.2). 
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Special cases of interest are obtained by taking n = k, -k, 0, 1 in (3.2). We get 

(3.3) ak4>kM = £ (-1)1 [ *] q^M+Vfa-ZlM, 
j=0 

(3.4) ak^k(a) = £ (-V [ *]g^'W^M, * 
M 

(3.5) ^\EM^;]^n^, 
'ro 

(3.6) ak -~E t-1)l[k,yM-1}*k-2i+ita) • 

Note that in approximately half the terms on the right of (3.6) the subscript k-2j+1 is positive but is negative in the 
remaining terms. Also, if we prefer, we may eliminate negative subscripts in (3.4), (3.5), and (3.6) by making use of 
(1.10). 

It is clear from (1.1) that we may put 

(3.7) ak = Y, <-VJQJCkj<l>k-v+iM , 
2j<k 

where the coefficients Ckj are independent of a. This formula is of course not the same as (3.6). To determine Ckj 
we multiply both sides of (3.6) by a and then apply (3.1). We get 

ak+1 == E (-VJQJCkj {<t>k-2j+2<a)-qk-2i<l>k-2j(a)\ 
2j<k 

= X (-v'qJCkj<l>k-?/+2M+ E (-i)jqk~i+1ck,H<t>k-2j+2(a)-
2j<k 2j<k+1 

It follows that 
(3.8) Ck+U = CkJ + qk-2i+1Ck/H (2j<k). 

The first few values of Ckj are easily computed by means of (3.8). 

' / 7 \ 

0 

1 

2 

3 

4 

5 

6 

7 

0 1 

1 

1+q 

1 + q + q2 

1 + q+q2 + q3 

1 + q + q2+q3 +q* 

1 +q +q2 +q3 + q4 + qs 

2 

1+q 

1 +2q+q2 + q3 

1 +2q+2q2+2q3+q*+q5 

1+2q+2q2+3q3 + 2q4 +2q5 + q6+q1 

3 

1+2q+q2+q3 

1 + 3q+3q2 + 3q3+2q4 + q5+q6 j 
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It is evident from (3.8) that Ckj is a polynomial in q with nonnegative coefficients and that 
(3.9) ' Ckf0 = 1 (k = 0, 1,2,-), 

(3.10) CkJ = 0 (2j > k). 
Also it is easily seen that 

(3.11) Ck1 = ~ ^ ~ (k > 1) . 
1 -q 

To get Ck/2 we take/ = 2 in (3.8). Thus 
r r nk~3r _ „k-3 1 - qk~1 

Lk+1,2-Ck,2 ~ Q Ck,1 ~ Q ~ j2_ , 
which holds for k > 3. Hence 

which reduces to 
(3.12) Ck+h2= [ * J 2 ] +« [ ^ J ' ] • 

In the next place, taking/ = 3 in (3.8), 
Ck+1.3 = Ck,3 = qk~5Ckf2 (k>5). 

We find that 
(3.i3) <*+r,3 = *- ; [ * j 2 ;KV;H- ' - ' -

By means of (3.8) it can be proved that 
(3.14) deg£*,/ = jk - 1/2j(3j + 1). 

The proof is by induction on k. The second term on the right of (3.8) is of higher degree than the first term, so that 
deg Ck+hj = k-2j+1 + te% Ck/H = (k- 2j + 1) + (j- 1)k - %(j - 1)(3j - 2) = j(k + 1)- 1/2j(3j + 1). 

It would be of interest to find a simple explicit formula for Ckj. The problem is equivalent to inverting 

(3.15) un = J^ [ " * * ] qk\n-2k (n = 0, 1,2, »J . 
2k<n 

In this connection the following two inversion theorems may be mentioned: 

if and only if 

ur = Z [ s ] ^ {r= 0,1.2,-.) 
2s<r 

vr - Z (-1)*q
y*<s-1> - L ^ - [ ' , - ] vr_2s (r = 0, 1,2, •••). 

u - - S ( [ ; ] - [ S - / ] ( ^ (r-0.1.2.-) 
2s<r 

if and only if 

*r = E (-D'q™8*" [ r 7 S ] ^ - 2 s (r = 0, 1,2, . . J . 
2s<r 

For proof of these and some related inversion theorems see [2]. 
4. Returning to the recurrence (1.2) we now construct a second solution \pn(a)= \jjn(a,q) such that 

(4.1) i>o(a)'= I ViM = a 
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and of course 
(4.2) $n+lM = a\pn(a)+ qn"7 \pn.jfa) (n > 1). 

Put 

(4.3) ^(a,x) = Y, ^n<a)xn . 
n=0 

Then 

so that 

^(a,x) = l+ax + Y <a^n.1(a) + qn'2^n.2(a))xn = 1+ax^(a,x)+x2^(a,qx), 
n=2 

(4.4) ^(a,x) = j - ? — + -^— *(a,qx). 
1 -ax 1 -ax 

Iteration of (4.4) yields 

r=0 <ax>r+1 

Hence 
O O , OO OO 

*(vc) = E qr<r-1,*2r E [ ' ? * ] a V = E x" E [ n 7 r ] Qr(r~1>Bn-2r. 
r=0 s=0 n=0 2r<s 

which implies 

(4.6) *nM = £ [n-r-]qr(r-1)an'2r . 
2r<n 

We have therefore n 

<4-7> 124>„M = <l>n+i(ciy2a)-
Finally we mention the following continued fraction formula. 

(4 8) a + JLd....9l = ^n+2(a) = Y V""**1! ak\n~2k+1 /Vs I " " - * ! nk(k+1)n-2k 
*4"8' a+ a+ a n/2 y ^ L k J * * / 2* L * J * a ' 

q <Pn + llq a) 2k^n + 1 / 2k<n 
An equivalent result has been obtained by Hirschhorn [ 3 ] , 
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