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1. Bruckman [1] defined a sequence of numbers {A,, } by means of

(1.1) (1-2)1+2)% = 3 Apz",
=0
so that
n
- ko=2k [ 2k
(1.2) An = 3 (-1%2 (k)
) k=0
He proved the striking result
2n __nlnd _ ,2 2n+1 _ arctan x
(1.3) ,:S;b‘ G T A X ok
which is equivalent to
n
2 _ ,-2n{ 2n n-k =2k [ 2k 2n + 1
(1.4) AF =2 (n)g_:;(—n 2 (k)Zy‘T/?TT'

Gould [4] has discussed Bruckman's results in some detail and indicated their relationship to earlier results. He re-
marks that “‘a direct proof of (1.4) by squaring (1.2) is by no means trivial.” However, he does not give a proof of
the formula.

The purpose of this note is to show that (1.3) is a very special case of a much more general result involving hyper-
geometric polynomials. We also show how a generalized version of (1.3) can be obtained using a little calculus.

2. In the standard notation put

.00

Fla,b c z) = Z

n=0

(a), = ala+1)~(atn—1), (a)g = 1.

n! (c), ’

where

Weisner [6] has proved the formula

o

n
(2.1) z (C):”f Fo(—n, a; c; x)F(—n, b;c;y)
n=0 ’
= (1=2)7"C(1+(x = 1)2)2(1+(y — 1)z) P Flab; c; ¢ ),
where
_ xyz
@.2) S (R oy R vy

This result had indeed been proved earlier by Meixner [5]. For an elementary proof of (2.1) see [3].
Replacing x, y by 1 —x, 1 —y, respectively, Eq. (2.1) becomes
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(2.3)

where
(2.4)
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Z (C}”z Fnl-n,a;¢c;1—x)Fp(-n, b;c;1—y)
n=0

= (1=2)7"7C(1 = x2)73(1 — yz) °Fla,b;c; T),

¢ = —x)(1—y)z
(7 xz2)(1—yz) "

In particular, for ¢ = a + b, Eq. (2.3) reduces to

(2.5)

Conslder

n=0

where we have used

It follows that

3 @ : InZ o (na;a+b; 1~ x)F(-nbra +b; 1~ y)
n=0 '

1]

(1—x2)72(1—yz)PF(ab;c ).

LI}

n! Tkllehe

o n -
2 o e 1—nen = 30 o2 3o O e
k=0

n=0

1]

K (a/k k_k (C_ik_}n_—i( n-k
/f:}') (~1) (1-x)¥z Z il

h

o -a
T - B gk gy < e (14K )T

Z %z” =(1-2)72.
n

n=0

2 %’ Fl-na;e; 1-x)z" = (1-2)"°(1-x2)72 .
n=0

Thus, for ¢ = a + b, we have

(2.8)

It follows that
(2.7

Z (a””" Fl-na;a+b;1-x) = (1-2)P(1-x7) .

Fl=n,a;a+b;1—x) = x"F(-n, b;a+b;1-x"").

3. We now specialize {25) by taking

(3.1)
Then (2.5) becomes

(3.2) Z (3/i}nz_
n=0

a=5% b =1 c=3/2.

Fol-n,%; 3/2: 1~ x)F(-n,1;3/2: 1 —y) = (1—xz) (1 - yz)  F(%,1;3/2: ).

In view of (2.7) this may be replaced by

33 3, @/—Zf]’;—@

Fol-n2%;3/2; 1~ x)F(-n,%;3/2; 1 - y"} = (1-xz)7%(1- yz}"F(%, 1,3/2; ).

We define the polynomial A,(x) by means of
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(3.4) Z Aplx)z" = (1=2)(1-xz)7% .
This is equivalent to
n
(3.5) Antx) = 37 272 ( 2 )k
k=0. '
Comparing (3.4) with (1.1) or (3.5) with (1.2), it is evident that
(3.6) Ap = Anl-1) .
It will also be convenient to define
n

6.) Bnle) = x"AptT) = 37 2% (2 )k

k=0

Comparing (3.4) with (2.6), we get

3.8) Ant) = 2000 £, 159/2: 1),
Thus (3.3) becomes
(3.9) ‘ (';’/‘;) AnlAnly) = (1—xz) (1= yz) TF(3,1:3/2: ).

Since =0 5 ,

_o2n _nl
and (3/2)n = 2 (2n +1)!
zF(Vz,I,'3/2,'—z Z (-1)" 5——— = arctan z,
(3.9) may be replaced by
~ 2i ninl  _2n+1 7

(3.10) 2 (-1 220 S 227 A A (y)

n=0

%
‘:(7 xN1=y)(1 +y22)} “arctan ( M=l —y) .
(1+x22)(1 +y22}

For x =y =—1, itis evident from (3.6) and (3.7) that

= Inl_ 42 2n+1 2% 2
3.11) 22n _nin’_ 52, = %(1 —z%) *arctan —=— .
nz;% Zn + 1)1 2

For y =x, the right-hand side of (3.10) becomes

(1—x)"1(1 +x22) *arctan 11=x): x}z = Z (—1)k (1=
1+x2°

}2k 2k+1

2 ,-2k-(3/2)
ok A1 (1+x27)

z (- 7)k (7—X)2k 2k+1 i (— 7)/(2k+/+/z)xj22j'

T 2k+1
Comparing coefficients of 2277 we get
n . )
2n _(2/7+7)/ ‘\(2,7__1'./,% )Xl”-—x)z"'_zi
(3.12) 2°"A, (X}A (x) T 20‘ ; =
=

The corresponding formula fOI'A,,(X}Zn (y) is more complicated and will be omitted.
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Forx =—1, (3.12) reduces to

n .
2 _ (2n+1)l _ n-i(2n-i+%)___2_'_2’__
(3.13) A = L 2_; (~1) ; FoTET
=

which may be compared with (1.4).

Formulas (3.11) and (1.3) are equivalent. This is a consequence of

2z
1-22
We remark that in a recent paper [2] Bruckman has considered a different generalization of 4,, .

arctan = 2arctan z

4, We can also prove (3.10) in the following way. To begin with, take

R . V) (1- x}z -2 (1-x)k
(1-2)""(1—-xz) (1-z) (7+ ) Z {—1) 2 ( >(7-— }k+(3/2)

k o~2k { 2k k Kk k+j+% i
z:(—7}2 (k)(7——x)z E ( j/ )z’.
k=0 =0
[t then follows from (3.4) that

n

(RN ?;% (kR (HN (02 ) (1 gk = 220 (2021 Z k() sl

Since
f(7—(7——x)t2)dt— Z( 7/"( i )%}ﬁf ,

k=0
it follows that

4.2) Antx) = 2720 (202 1l f (71— (1 x)t2) dt
and
(4.3) A (x) = 2720 (2”’“”’ f (x+(1—x)t2) " dt.
Thus
- 2 In! m 2 _ 2n+1
27; (~1)°2%" o AnlxlAnty )z = ‘[5 (—1)" A x)2?"* f ty+(1-y)t?)" dt

7 - -%
zf {7+(y+(7_y)12)22} 1{7+x(y+(7-y)t2)22} /dt.
0

We shall make use of the formula

, ’ W %
(4.4) f dt = ! arctan { x ( ab’—ah );
’ ’ 2 /b})% ‘

(a”+ %% )(a + btz}/ (a’(ab” — a \a’(a + bx2) /
where
a = 1+xyz2 = x(1-y)2?
a = 7+y22, b = (7—y)22

ab’ = ah = (7—x}(7—y)22, ath = 1+x22 .

’

We therefore get
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20 (127 e A Aty

= {(7—X)(7—V)(7+x22)}_yzarctan 32 ( (1= )2()__~y____7— }2 )(%
which is identical with (3.10). (1+x2%)(1+y2?) |

APPENDIX
5. We shall prove the following identity:
—~ . -
n r s
(5.1) PIRELIPL S (;’) e 3 (=1F( 7 ) day
n=0 r=0 s=0

o Z ()\)n ()(Zz))2 Cn(\, x,2)0,(N, y, 2],

where { Ch } { dp } are sequences of arbitrary complex numbers and

TR ML A VRS DL AN T

7
r=0 s=0

We may think of (4.1) as an identity between formal power series.
PROOF OF (5.1). The left-hand side of (4.1) is equal to

o~ .y "
(5.2) Z (—1)" e dex"ys Z -n—lg ('r’)(s )z".
r,s=0 n=0
The right-hand side of (5.1) is equal to

(1-z2)* Z %i-" (xyz)" Z (—)y;,")' Cnrl~x2)" E (—7%% dpsl—yz)S(1 = 2)7277S
n=0 r=0 ) s=0 )

7—2}_ Z z (—1 )r+s n\)n+r()\)n+s Cn+rdn+an ryn+szn+r+s”_2)-2n—r—s

nlrlsI N,
n=0 r,s=0
o0 min(r,s) rts—n
= _ A g )rts roSeq _ )r=s Z
= (1-2) 2;0 (=) (Nse,dox"y (1 - 2) :;o Py oy
Comparing this with (5.2), it is evident that it suffices to show that
) , N min{r,s) Srtsen
(Nn ~\~r-s
(63) Z )0 ) = outr =2 Z}) nllr— n)ifs — nli(N),
=
If we multiply both sides of (5.3) by x"y°, and sum over r, 5, we get
min(r,s)
(A )n n.n _ A z S
z (1+x)"(1+y)"z (1-2)° Z (Np(Ns —= (71— 2)*s nlfr —n)l(s —n)I(\),
n=0 r,5=0 n=0

_o Z (7\)n (Xy;)" Z (N+n)e(N+n)s (xz)" (yz)® _ (12 Z (>\)n

Is! +,
r.5=0 ris! (7 z}rs

71—z 71—

’XVZ)" ( 1- -z ) A""( 7——&2)_“ = (1T=2M1=(1+x)2SM1 = (1+y)2™>

(1-27"

[7 xyz_ ]—)‘: (7_2)’\{[1~(7+x)z] [7—(7+V)Z]—XVZ}_}\

(1—(1+x)2)(1—(1+y)z)

).
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Thus (5.3) is equivalent to
[1=(1+x)1+y)zl™ = (1= 2™ [1 = (14 x)2] [1 = (1+y)z] —xyz}™
and so to
(1—=z)[1—(T+x)(1+y)z] = [1—(1+x)z][1—(1+y)z] —xyz.
This equation is easily verified.
This completes the proof of (5.1).
The identity (5.1) contains numerous interesting special cases. In particular, taking

c _ (a)n - (b)n
n = 73 n -
(5.1) becomes (e)n ()
— (Nn n V’n‘ rl n\(@) r ‘ s(n\(bs
(5.6) _Zo o (D X ()
n= r=0 s=0
= (1=z P (_)‘I)_" -Q‘ZZ)T Cnlx,z)Dply,z),
om0 " 1=z
where now ) (\+n).(a)
_ *n)plalntr | ~xz r
Cn(X,Z) = ;0 A f-’/é')n+r ( 71—z >
(5-7) ©o
_ ()\+”)s(b}n+s / -yz \$
Onth2) = 3 —iidms | 75

This result was proved in an entirely different way by Meixner [5].
We now specialize (5.6) further by taking A=c =d. Thus (5.7) reduces to

Catiz) = Z () = e (10725 )T = =0 1=,

Doly,z) = (b1 —2)°7" (1= (1= y)2) 2" .

Therefore (5.6) reduces to

L (C)'n ng“ (— 7)r(n)(a}r E“ (— ”s( );b)/s s

n=0 r=

_ a+tb-c - -b . n\)n Xyz n
= (1= 2P0 (1) (1= (1 yh® 35 L ((1—(1—x}z}(7—(7~y}z}>

n=

This is the same as (2.1).
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