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We define the sequence Rp, A7, R, - by the recursive relation
Rn+1 = afln+bRp_g

inwhichs = 7 or —7; a and the discriminant A = a2 +4b are positive integers. In addition, we have the initial
conditions Rp=0 and R; may be any positive integer. We now state the following:

Theorem. The rank of apparition of an integer 7 in the sequence R, R 7, B2, - does not exceed 2.
Proof First we observe that A7 divides all terms of the sequence. If the theorem holds for the sequence

o-fo B Ay
H7 ! HI ’ H,
then it apparently holds for the sequence Rg, A7, R2, ---. Therefore we may suppose in what follows, that R7 = 1.
Let M be a positive integer ax
M = pSipgz pg
Here p7, p2, -, px denote the different primes of M and a;, ap, -, ax their powers. To each p; (i = 1,2, -+, k) we
assign a number s; :
si=pi+1 if p; isoddand p;fA;
the minus sign is to be taken if A is a quadratic residue of p; and plus sign if it is a nonresidue

si=p;j if p; isoddand p;|A.
si=3 if p;=2 and A odd.
si=2 if p;=2 and A even.

. — — Qfe—
Let m be any common multiple of the numbers s, p%1 1, 5,052 1., sk,ukk " then M R . Inthe case that:m

constitutes the least common multiple of the mentioned numbers, the proof can be found in Carmichael [1]. From
the known property Rq‘| Rnq. n and g denote positive integers, it appears that m may be any common multiple (the
property R |Rpq can be found in Bachman [2]).

Now suppose that M contains only odd primes p7, p2, -, P Withp7 YA, p2 fA, -, px fA, then it is not diffi—
cult to verify that the product

_ _ ag~-1
0 Y AV
2 2 2
. - -1 . .
is a common multiple of the numbers s, p&t 7, skpzk and therefore ¥ |R,,, . It is easy to verify that
m _4
- << =
M 3

The extension is easily made to the case where M/ contains also odd primesg 7,92, -, go withgy |A, -, gg |A and
/or to the case where /M is even.
In the first case we form a common multiple by multiplying (1) with q‘?qui ~--qg’2 (the numbers §,, ---, B, con-
stitute the powers of g, , -+, go in M).
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In the second case we multiply (1) with 27 if A is even and with 3.2Y~7if A is odd (y is the power of 2 which is
contained in /). We now obtain
m < ;—M if A iseven
m < 2M if A isodd.
This completes the proof.
SOME EXAMPLES

1. The Fibonaccisequence: a = b =7 A =5 R;=F;=1
If M=27then p;=3 pp=7s0sy=4sp=8andm=2-
Therefore 27| Fyg (in fact ZIiF,).
If M=110=2"5"11 then m = 3.5-2- 12 = 150 so 110|F .
The only numbers having a rank of apparition equal to 2/ are 6, 30, 750, 750, -so 61 F,,, 30| F,,, 1501F,,,,
etc.
2. ThePell numbers: 0,1,2,5,12,29,70,---a =2 b =1 A =8.
The numbers 3, 9, 27, ---constitute the only numbers having a rank of apparition equal to ;LM. So 3‘,‘74, .9| R, .
etc.

= 16.
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In the special case & = —7 the theorem can be strengthened. We use the same notation as before. First we prove the
following

Lemma. Let b=—1. If p; isan odd prime and p; /A then

pi|Rsizz
Proof, We suppose again #7 = 1. Next we introduce the auxiliary sequence Tg, 77, T2, --With Tpey=aT,~Tph-q
and the initial conditions Tgp=2 T; =a. The following properties apply: (Proof in Bachmann [2])

I Pi{’qs;
1. Pi| Ts;—2
W. Rz, = R, T, (n isa positive integer)
IV. Ta, = T2=2 (n isapositive integer) .
Take n = s;/2 in Hll and IV. From Il and IV it follows
pi{ Ts;/2 -
From | and 111 it then follows p; Bs; - This proves the lemma. Now let // be again an integer

L¢3
M = pixlp‘zxz "'pkk .

Further let m be the product of the numbers
; -1
) (sipi* /2
respectively s,-,u?"-7 i = 1,2, -, k), where we have to choose the first number if p; is an odd prime and pifA;
the second number if p; |A or p;=2. By Carmichael’s method it can be proved that again M‘Hm ;
It is easy to verify thatm < M if A is even and that m < S M if Ais odd. So we have found:
The rank of apparition does not exceed M if 5 = —7 and A is even.
The rank of apparition does not exceed %M ifb=—17and Ais odd.
EXAMPLES

PREAMBLE: The equation X2 — Y2 = 7 in which /V constitutes a positive integer, not a square, and X and Y are
integers. is called Pell’s equation. For given /V, an infinite number of pairs X and Y exist, which satisfy the equation.
If X, and Y, constitute the smallest positive solution, all solutions can be found from the recursive relations

Xn+1 = 2X7 X — Xp-q Yot1 = 2X1Yn = Yn-1
with initial conditions Xgp=1, Yp=0.
The sequence Yy, Y7, Yo, -+ does satisfy the conditions of the strengthened theorem.
EXAMPLE 1. Let ¥ =3, s0 X2 — 3Y2=7 then Xy=2, Yqy=1 A=12 Thesequence Yy, Yy, Yo, - consists
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ofthenumberSU 1,4,15,56,209, - . \fM=110=2-5-11 thenm = 2 = 7—Q=3030 110\Y30. M =18 = =2.32

then m =2-3% = 18 50 78’Y,3
EXAMPLE 2. X2 -2Y2=1 thenX;=3, Y;=2, A =32
The sequence Yy, Yy, Y2, - consists of the numbers 0, 2, 12, 70, --- (which are Pell numbers with even subscript).

The rank of apparition of any number M is less than M.
REMARK

If b #+1 the theorem will generally not be valid; e.g., on takinga =4, b = 6, R; = 7 any number M containing the
factor 3 will not divide a member of the sequence.
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FIBONACCI AND LUCAS SUMS IN THE ~-NOMIAL TRIANGLE
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ABSTRACT
Closed-form expressions not involving ¢, (p,r) are derived for
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where cp, (p,r) is the coefficient of y” in the expansion of the r-nomial
(1+y+y2 4ty P 1 =234,  p=012-,

and 7, (x) and 2, (x/ are the Fibonacci and Lucas polynomials defined by
filx) = 1, falx) = x, falx) = xfp_1(x) +fo_2(x);

27(x) = x, 2o(x) = x2+2, Qulx) = Xp-1(x) #2p-2(x).

Fifty-four identities are derived which solve the problem for all cases except when both 4 amd m are odd; some
special cases are given for that last possible case. Since 7,(7)= F, and 2,(7) = L, the nt™h Fibonacci and Lucas num-
bers respectively, all of the identities derived here automatically hold for Fibonacci and Lucas numbers. Also, f,(2)
= P,, the n™ Pell number. These results may also be extended to apply to Chebychev polynomials of the first and
second kinds.

The entire text of this 51-page paper is available for $2.50 by writing the Managing Editor, Brother Alfred
Brousseau, St. Mary’s College, Moraga, California 94575.
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