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We define the sequence Ro ,Ri ,R2, ••• by the recursive relation 
Rn+1 = aRn+bRn-j 

in which/? = / or - / / a and the discriminant A = a2 + 4b are positive integers. In addition, we have the initial 
conditions Ro = Q and R-j may be any positive integer. We now state the following: 

Theorem. The rank of apparition of an integerM in the sequence Ro, R7, R2, -does not exceed 2M. 

Proof First we observe that #7 divides all terms of the sequence. If the theorem holds for the sequence 

*1 ' R1 ' R1 ' 

then it apparently holds for the sequence RQ, R-J , R2, —. Therefore we may suppose in what follows, that/? 7 = /. 
LetM be a positive integer 

M = Pa
x*P%*~Pkk • 

Here p 7, P2, —, Pk denote the different primes of M and aj,'a2, —, &k their powers. To each p,- (i = 1,2, —, k) we 
assign a number s,-; 

Sj = pj±1 if Pf is odd and p,J(A; 
the minus sign is to be taken if A is a quadratic residue of/?/ and plus sign if it is a nonresidue 

Sj = pj if pi is odd and /?/ |A. 

Sj = 3 if pf = 2 and A odd. 

Sj = 2 if Pi = 2 and A even . 

Let m be any common multiple of the numbers sxp®l~1 ,s2p*2~~1,-rSkpt^1 then M\Rm. In the case that m 
constitutes the least common multiple of the mentioned numbers, the proof can be found in Carmichael [1 ] . From 
the known property Rq | Rnq, n and q denote positive integers, it appears that m may be any common multiple (the 
property Rq \Rnq can be found in Bachman [2]) . 

Now suppose that/^contains only odd primes p uP2, —*Pk w i t n P1 ^ A ^ / f A , -,Pk / fA, then it is not d i f f i -
cult to verify that the product 

{1, m=2s^L-hSbL-.J±Bh— 

is a common multiple of the numberss%p^l~1
 f -,skp%k~ and therefore/^ \Rm. It is easy to verify that 

m < 4_ 
M " 3 ' 

The extension is easily made to the case where M contains also odd primes qi,q2, —,QQ. with q7 |A , •••,#£ |A and 
/or to the case where M is even. 

In the first case we form a common multiple by multiplying (1) w t t h ^ f 1 ^ 2 -q^ (the numbers ft, •••, P& con-
stitute the powers of q%,—, q& in Ml 
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Sn the second case we multiply (1) with 27 if A is even and with 3.2y~1 tf A is odd (7 is the power of 2 which is 
contained in M). We now obtain 

m < %M if A is even 
3 

m < 2M if A is odd. 
This completes the proof. 

SOME EXAMPLES 

1. The Fibonacci sequence: a = b = 1 A = 5 Rj = Fj = 1. 

If M = 21 then p7 = 3 p2 = 7 so s1 = 4 s2 = 8 and m = ^ 4 * I = 16m 

Therefore 21\FH (in fact 27\FB). 
If M= 170 = 2-5-11 then m = 3<5-2- 1-£ = 150 so 110\FISO. 
The only numbers having a rank of apparition equal to 2M are 6, 30, 150, 750, -$Q6\FI2, 30\F60, 150\F300I 

etc. 
2. The Pell numbers: 0, 1,2, 5, 12,29, 70, •» a = 2 b = 1 A = 8. 

The numbers 3,9,27, ••• constitute the only numbers having a rank of apparition equal to IrM. So 3\R4,9\ R12 , 
etc. 

In the special case/? = - / the theorem can be strengthened. We use the same notation as before. First we prove the 
following 

Lemma. Let b = -1. If /?,- is an odd prime and p,-J[A then 

Pi\RSj/2 
Proof. We suppose again / ? / = / . Next we introduce the auxiliary sequence TQ, T-J, T2, —with Tn+i=aTn - Tn-i 

and the initial conditions TQ = 2 TI = a. The following properties apply: (Proof in Bachmann [2]) 

!• Pi\RSi 

I I . Pi\TSj-2 

I I I . R2n - RnTn (n is a positive integer) 

IV. T2n = T„-2 (n is a positive integer). 
Take n = s,-/2 in III and IV. From II arid IV it follows 

Pi^sf/2-
From I and III it then follows Pj\Rs.%. This proves the lemma. Now let M be again an integer 

M = p^p^-ptk • 
Further let m be the product of the numbers 

isiPr1)/2 
respectively SjPj' (i = 1,2, —, k), where we have to choose the first number if /?; is an odd prime and p,-J(A; 
the second number if P/|A or p, = 2. By Carmichael's method it can be proved that again M\Rm. 

It is easy to verify that m < M if A is even and that m < ^M if A is odd. So we have found: 
The rank of apparition does not exceed M If b = -1 and A is even. 
The rank of apparition does not exceed ̂ M \fb = — 1 and A is odd. 

EXAMPLES 

PREAMBLE: The equation X2 - NY2 = 1 in which N constitutes a positive integer, not a square, and X and Kare 
integers, is called Pell's equation. For given N, an infinite number of pairs X and Y exist, which satisfy the equation. 
\\XX and Yx constitute the smallest positive solution, all solutions can be found from the recursive relations 

Xn+1 = 2X1Xn-Xn.7 Yn+1 = 2XjYn- Yn_t 

with initial conditionsXQ- 1, YQ = 0. 
The sequence YQ, YJ , Y2, ••• does satisfy the conditions of the strengthened theorem. 
EXAMPLE 1. le\N = 3, soX2-3Y2= 1 then X7=2, Y1 = 1,A=12. The sequence Y0, Yh Y2f - consists 
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of the numbers 0, 1,4, 15, 56,209, - .If M = 110 = 2-5-11 then m = 2-6-- 1-^-= 30 so 110\Y30. If M= 18 = 2-32 

then m=2-32= 18 so 18\Y18 . 
EXAMPLE 2. X2-2Y2=1 thenX;=J, Y7=2,A=32. 
The sequence YQ, YI, Y2, — consists of the numbers 0,2, 12, 70, — (which are Pell numbers with even subscript). 

The rank of apparition of any number M is less than M. 

REMARK 
If b £+1 the theorem will generally not be valid; e.g., on taking a = 4,b = 6,Rj=1my number M containing the 

factor 3 will not divide a member of the sequence. 
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ABSTRACT 
Closed-form expressions not involving cn(per) are derived for 

p(r-1) 

(1) E cn(p,r)%n+jM 
n=0 

p(r-1) 

(2) £ Cn(P-^hn+jM 
n=0 

p(r-1) 

(3) £ cn(p,r)(-1)nfZ+IM 
n=0 

p(r-1) 

(4) £ cn(PSH-1>n*bn*jM* 
n=0 

\NhBvecn(p,r) is the coefficient of y'7 in the expansion of ther-nomial 
(1 + y + y2 + .~ + yr-1f, r = 2,3,4,-, p = 0, 1,2,-, 

and fn(x) and &n(x) are the Fibonacci and Lucas polynomials defined by 
fl (x) = 1, f2 (x) = x, fn (x) = xfn. 1 (x) + fn-2 M ; 

fi/W = x, z2(x) = x2 +2, zn(x)-= xzn-i(x)tzn-2M-
Fifty-four identities are derived which solve the problem for all cases except when both b amd m are odd; some 

special cases are given for that last possible case. Since fn(1)= Fn and zn(1)= Ln,thenth Fibonacci and Lucas num-
bers respectively, all of the identities derived here automatically hold for Fibonacci and Lucas numbers. Also, fn(2) 
= Pnt the nth Pell number/These results may also be extended to apply to Chebychev polynomials of the first and 
second kinds. 

The entire text of this 51-page paper is available for $2.50 by writing the Managing Editor, Brother Alfred 
Brousseau, St. Mary's College, Moraga, California 94575. 


