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Halsey in [1] defined a Fibonacci function by
m
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(1) Fy = Z[(u—k)f x"-Zk-’n-x)kdx] ,
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where m is the integer in the range (u/2) — 1 <m <(u/2)
This definition was criticized by Parker {2] for (a) being restricted to rational u's and (b) destroying the relation
(2) Furg = Fy+Fyg .

Neither of these criticizms are quite fair. Firstly, there is nothing in Halsey's paper to prevent (1) from defining
F,, for all real v and secondly (2) is still satisfied for approximately half of the real values of  and it is generalized
in the ather cases. This we show helow.

Firstly, we express £, in the more convenient form given implicitly by Halsey:
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where (u/2) — 1 <m < {u/2) and m is an integer.
Now if (u/2) = % <m < (u/2), then
utl _ u utl
7 I <m«< 3 < 7
so that
m
Fu'+1 = E(U+7;k*7)
k=0
with the same m.
Also,
”2—7—7<m—7<‘i—1 <”;7
so that
m-~1
—f =k —
Fy-1 = E( “ 7/( 7)
k=0

also with the same m.

Now
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If on the other hand (u/2) — 1 <m < (u/2) - %, then

utl _ u + utl
3 7<2<m 1< 7
so that
m+1
71—k —
Furr= (7T
k=0

where we are still using m as in (3).
Now

m
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m~1
(”;}’4’_’7’7) +Z(“_7;q“’) as before
q=0
fu-m—1\_[u-1-m—1" _ (u—m—-1) (fu=m-=2)!
( m+1 ) ( m )+F"" Fust * 1= 2m = 2im 171~ = 2m — 2)im]
(u—m-=2)! - u—-m-2
F”‘7+(u—2m—3)!(m+7}! F”'7+( m+1 )
Thus we have for 2m < v <2m + 1 that (2) applies and for2m + 1 <u <2m +2
®) Fu+7=Fu+Fu—7+(u,_nT1_2) .

where m is an integer.
Equation (5) also reduces to (2) when v is an integer and is also verified by Halsey’s tables for F,,.
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