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1. INTRODUCTION

A pythagorean triple is a tripie of natural numbers fx,y,z) such that x2 +y? = 22, Such a triple is called a primitive
pythagorean triple if the companents are relatively prime in pairs. it is well known [5, pp. 4—8] that all primitive
pythagorean triples are given, without duplication, by:

(L1 X = 2mn, y = m? —n?, zZ=m*+n?,

where m and n are relatively prime natural numbers which are of opposite parity and satisfy m > n. Conversely, if m
and 1 (m > n) are relatively prime natural numbers of opposite parity, then they generate a primitive pythagorean
triple according to {1.1).

In this paper | will adhere to the following conventions:

{a) The first entry of a pythagorean triple will be the even leg of the triple.

(b} The second entry of a pythagorean triple will be the odd leg of the triple.

{c) The third entry of a pythagorean triple will be the hypotenuse and will never be called a leg of the triple.

(d) The natural numbersm and 77 in Eq. (1.1) will be called the generators of the triple (x,y,z).

Since every prime of the form 4k + 1 can be written as the sum of two relatively prime natural numbers [6, p. 351]
it follows that there are infinitely many primitive pythagerean triples with the hypotenuse equal to a prime. It is also
easy to see that there are infinitely many primitive pythagorean triples with the odd leg equal to a prime, by noting
that for any odd prime p, m = (p + 1)/2 and n = {p — 1)/2 generate a primitive pythagorean triple with the odd leg
equal to p. It is completely trivial to show that the even leg is never a prime. Thus it is an easy problem to determine
whether there are an infinite number of primitive pythagorean triples with any one of its components equal to a
prime. However, the problem changes drastically if we try to determine whether there are an infinite number of
primitive pythagorean triples with more than one component or some linear combination of the components equal
to a prime. For example Waclaw Sierpinski [5, p. 8], [7, p. 94] raised the following question:

SIERPINSKI'S PROBLEM: Are there an infinite number of primitive pythagorean triples with both the hypoten-

use and the odd leg equal to a prime?

This problem is equivalent to asking for an infinite number of solutions, in primes, to the Diophantine equation
g* = Zp — 1. This equivalence is easily proved by noting that if (£.g,0/ is a primitive pythagorean tripfe with p and g
both prime, then

g* = p*~t* = (p—thp+tl

Since g is prime and p + ¢ > p — t > 0, it follows that g2 =p + tandp — t = 1. Hence g* = 2p — 1. Conversely, if
g% =2p— 1, then {p — 1, g, p)is a primitive pythagorean triple. Other than this simple transformaticn, it seems that
no progress has been made toward a solution to Sierpinski’s problem.

As a result of his involvement with Sierpinski’s Problem, Professor I.A. Barnett was quite naturaily led to the fol-
lowing similar questions.

*The research for this paper was supported in part by Ohio University Research Grant number QUR 252.
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QUESTION A: Are there an infinite number of primitive pythagorean triples for which the sum of the legsis a

prime?

QUESTION B: Are there an infinite number of primitive pythagorean triples for which the absolute value of the

difference of the legs is a prime?

QUESTION C: Are there an infinite number of primitive pythagorean triples for which both the sum of the legs

and the absolute value of the difference of the legs are prime?

Questions A and B are both answered in the affirmative [8]. In this paper we present a complete characterization
of those triples which have either the sum or the difference of the legs equal to a prime. Question C is much more
difficult and is discussed in some detail in this author’s Ph.D. dissertation. The results related to Question C will be
the subject of a future paper.

A few basic facts about the integral domain

Z[\2] = {a+bv2|a b € z}

andabout the Pell equation u? — 2v? = p, where p is a prime, will facilitate the discussion of Questions A-and B. The
facts about the integral domain Z/</2] will simply be stated with references to the proofs. However, the discussion
of > — 2v? = p in Section 3 will be more detailed because it is quite elementary and is significantly different from
the usual discussions of this particular Pell equation.

2. THE INTEGRAL DOMAIN 2/\/2]

For the remainder of this article, | will follow the usual custom of referring to elements of Z/\/2] as integers and
elements of Z as rational integers and | will use the following notation:

If
a=a+hy2,
then
a=a-b/2
is called the conjugate of a.
Nfa) = aa
is called the norm of a.
Rla) = a
is called the rational part of a.
lla) = b
is called the irrational part of a.
€=1+2
is called the fundamental unit in Z/\/2/.
el = —1+2

is called the inverse of €. .
As usual, a unit of Z/\/2] is defined to be a non-zero element of Z/\/2/ which has an inverse in Z/\/2], or equi-
valently, an element of Z/</2] whose norm is +1. The set of units of Z/\/2] is precisely the set of

{-_ren\n € Z}
[4, p. 2351, [2, p. 209] and for this reason € is called the fundamental unit of Z/\/2].
If @ and & are integers and there is a unit -y such that a = 6+, then a is called an associate of 8. A non-zero element
of Z[\/2], which is not a unit, is a prime if and only if it is divisible only by units and associates of itself. it is easily

shown that if aand & are associates, then
Nla) = +N(E ),

but the converse is in general not true. However, if a and 6 are both primes and V(a) = +N(5),then ais an associate
of either & or §. The primes of Z/\/2] are all associates of:
M v2
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(2) All rational primes of the form 8k +3. These are frequently called prime of the second degree.

(3) All conjugate factors of rational primes of the form 8k + 7. These are frequently called primes of the first degree.
This result is found in any discussion of the integral domain Z/./2], for example [4, p. 240], [2, p. 221].

Each of the properties, listed below, in Lemma 2.1, is an elementary consequence of the definitions of the sym-
bols involved. Consequently, they are listed without proof.

Lemma 2.1: 1f aand Bare integers, then
a+a = 2R(a)
a-a = 2\/2/(a)
RlaB) = Rla)R(B)+21(a)i(B)
I{aB) = I(a)R(B)+ Rla)l(B)

RlaB) = R(a)R(B)— 2/(a)l(B)
iaB) = R(BMa)— Rla)I(B)

Rlae) = Rla)+2l(a)

l{ae) = Rla)+I(a)

3. THE PELL-TYPE EQUATION o> - 2v2 =p

Most number theory books have some discussion of the Pell equation and Pell-type equations. A particularly good
discussion is to be found in Chapter VI of [3] and a very detailed history is found in Chapter XII of [1]. In this pa-
per we only need consider the very special Pell-type equation

(3.1) ur=2v* = p,

where p is a rational prime.
As usual, any two rational integers v = a, v = b will be called a solution of Eq. (3.1) if 2> — 262 = p. It follows
from the previous section that v = a, v = b is a solution if and only if

Nfa+by2) = p.
From the discussion of primes in Z/\/2/, it is clear that Eq. (3.1) hasa solution if and only if the rational prime p

is of the form 8k #1.
If

I

i

Nla+by2) = p,
then the four solutions
u=a Vv==~b u=a v=-b u=-a v==~b u=-a V=-bh
are said to be the solutions obtained from a + b+/2. Notice that the same four solutions are obtained from each of
atbyz, a+byzZ ., —(a+byZ) and —(a+by2 .
It is easily shown [4, p. 242] that if a=a + b/2 and N(a) = p, then all solutions of Eq. (1.2) are obtained from

{aEZtI teZ }

and conversely, every element of
{aezt| te Z }

yields a solution of Eq. (3.1).
The equation
ut—2v* = p
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may easily be transformed to the equation

u? v?
(NP):  (Jp/2)?
which is the standard equation of a hyperbola. Thus integer solutions of Eq. (3.1) are easily associated with lattice

points on the above hyperbola. Figure 1isa graph of this hyperbola. Reference to Fig. 1 makes it clear that if v = a
>0andv =56 > 0isa solution of Eq. (3.1), and then

VP < a< <2 and 0<b < \p/2

are equivalent. The remainder of this section will show that there is exactly one solution which satisfies these
conditions.

el <

(N2p,~p/2 )

N/

Figure 1
If p is arational prime of the form 8k + 7, then the set
S = { (uvl)lue ZveZu>0v>0u>-2° =p%
is infinite and contains an element (a,4) with minimal first component. Since

(a+b/2)e? = (3a—4b)+ (36— 2a)\/2
it follows that
u=3a-4b and v=3h-2a

satisfy
ur —2v* = p.
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Note that
a*-2b>=p >0

implies that b < a//2. Thus

3a—4b > 3a—4ay2 = al3-22) > 0.
Hence either
(32— 4b, 3b — 2a) or (32— 4b, 2a — 3b)

is in S. In either case we have
a<3a-4b,
which implies that
4h* < a* = p +2b?,

and this in turn implies that b < </p/2 . Hence there is at least one solutionuv =a, v = b of u?> — 2v? = p with
Vo <a << and 0<b <<p/2.

To show that there is only one solution of (3.1) which satisfies the above inequalities it is helpful to observe that:
Forevery 8 € Z[\/Z],

R(Be*) = 3R(B)+41(8)

1(Be?) = 2R(B) +31(B)

R(Be?) = 3R(B)—4/(3)

1(Be~?) = 31(B)— 2R(B).
It follows from these equalities that if #(3/ > 0 and /() > 0, then

R(Be=) < RlBe*) and RIBE2t) < R(Be?t*?)
forall £ > 0. Note also that if £(8) > 0, then /(B) < 0 implies that
R(Be™t) < R(Be2t2)

forallt>0.
Let a=a +b/2 with

P < a< 2 and 0 < b < ~p/2
and let v =a, v = b be a solution of (3.1). Then

ae* = (3a+4b)+(2a+3b)\/2
and
ae? = (3a—4b)+(3b—2a)\/2.
Clearly
3a—4b < 3a+4b

and from the previous remarks it follows that the rational parts of ae?lt> 0, form a strictly increasing sequence.
If we assume that 36 — 2a > 0, then 956> > 4a* and hence

—4p +b* = —4(a*> — 2b%) +b* > 0.
But then b2 > 4p and

b= 2Jp > (1/\J2Np = Jb/2 .
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This contradiction shows that 36 — 22 < 0 and from the previous remarks it follows that the rational parts of ae’Zt,
t > 1, form an increasing sequence.
If we assume 32 — 4b < a, then a2 < 4h* and hence

p—2b* = a*—-20*>-2b* = a* —4h* < 0.
But then \/p/2 < b and we conclude that
3a—4b >a > \p > 0.

It now follows that if
3a—4b > /20,

then the rational part of ae?t will be greater than /2p forall ¢t #0.
If we assume
3a—4b < /20 .
then by squaring both sides and collecting terms we have
17a* — 10p < 24a\/(a* —pl/2 .
Note that
173> — 10p = 7a* +20b* > 0.

Squaring both sides again and simplifying yields

a* —52a%p +100p* < 0,
which can be written as
(a2 — 10p)* < 32a°p.
This is a contradiction because
a*—10p < 2p—10p = -8p
and hence
fa®> — 10p)* > 64p> = (32p)(2p) > 32pa* .
Thus
3a—4b > /2o .
This establishes that there is at most one solution v = 3, v = b such that \/Jo <a<+/20 .
The material in this section is summarized in Lemma 3.2 below:

Lemma 3.2. |f p is a rational prime of the form 8k + 7, the equation u> — 2v*> = p has exactly one solution
u =a, v= b such that the following two equivalent statements are true:

(i) P <a<<2
(ii) 0<b <p/2.

The equation v? — 2v? = p has “infinitely many solutions, all of which are obtained from
(a+byZ)e?t,

where t is any rational integer and v = a, v = b is any solution of u? — 2v? =p.
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The unique solution which satisfies (i) and (ii) will be called the fundamental solution of u> — 2v* = p.
4 PRIMITIVEPYTHAGOREAN TRIPLES WITH SUM OF LEGS EQUAL TO A PRIME

The thearems of this section show that if {x,y,z/ is a primitive pythagorean triple with x +y equal to a prime p,
then p is of the form 8k + 7, and canversely, if p is a prime of the form 8k + 7, then there is a unique primitive py-
thagorean triple (x,y,z) such that x + y = p. Since there are infinitely many primes of the form 8k + 7, this yields an
affirmative answer to Question A of Section 1,

Theorem 4.1.  If (x,y,z} is a primitive pythagorean triple and p is a prime divisor of x +y or Ix — y1, then p
is of the form 8k + 1.

Proof. Suppose p divides x +y or ix — yI. Note this implies (x,p) = (y,p) = 1, and x = #y (mod p) so that
(1) 2x? = x*+y? = 22 {modp).

By definition, x2 is a quadratic residue of p. The congruence {1} implies 2x2 is also a quadratic residue of p. [fp
were of the form 8k +3, then 2 would be a quadratic nonresidue of p [3, pp. 136—138] and since x? isa quacratic
residue of p, 2x* would be a quadratic nonresidue of p, contradicting (1). Thus p must be of the form 8k + 1.

Corollary. ¥ x and y are the legs of a primitive pythagorean triple, then both x + y and Ix — y| are of the form
8k +1.

This corollary is immediate from the theorem but it should be pointed out that the corellary may be proved di-
rectly by considering the following two cases:

m=2r n=2t+}

It}

m=2r+1 n=2t

where m and n are the generators of the primitive pythagorean triple.

Theorem 4.2. For every prime p of the form 8k + 7 there exists a primitive pythagorean triple (x,y,z) such
thatx +y=p.

Proaf. Let p be a prime of the farm 8k + 7 and let v = 3, v = b be the fundamental solution of u* — 2v*> = p. Let
m =a— b andn =5 Note{m,n)=1because {a,b) = 1. Clearly m and n are of opposite parity because m +n=a=7
(mod 2). i m <n =05, then

p+2b% = a* = (n+m)> < 4b*
and thus # > p/2, a contradiction. Hence m > n. Thus m and n generate the primitive pythagorean triple
x = 2mn, y = m?—n? z=m*+n*.

For this triple

x+y =2mn+m*—n* = (m+n)* —2n* = a*>-2b* = p.

Theorem 4.3. If p is a prime of the form 8k + 7, then there is exactly one primitive pythagorean triple (x,y,2/
such thatx +y =p,

Proof.  Letm and n generate a primitive pythagorean triple (x,y,z) such thatx +y = p. Then

{m+n)>—2n* = p.
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Since m > n it follows that

p = (m+n)*—=2n* > (2n)* - 2n* = 2n?,
which implies that n < </p/2 . Thus v = m + n, v = n is the fundamental solution of v*> — 2v* = p, and hence,
by Lemma 3.2, m and n are uniquely determined.
5. PRIMITIVE PYTHAGOREAN TRIPLES WITH DIFFERENCE OF LEGS EQUAL TO A PRIME

The material in this section is related to Question B of Section 1. The first theorem provides an affirmative answer
to Question B by showing that every prime of the form 8k + 7 is equal to the difference of the legs of some primi+
tive pythagorean triple. The second theorem shows that for every prime of the form 8k + 7 there is an infinite num-
ber of primitive pythagorean triples with the difference of legs equal to that prime. W.P. Whitlock, Jr. [8] discusses
briefly these same two theorems and points out that these methods were essentially known to Frenicle. The re-
mainder of this section is devoted to the characterization of all primitive pythagorean triples with difference of legs
equal to a prime.

Theorem 5.1. For every prime p of the form 8k +7 there is a primitive pythagorean triple (x,y,z) such that
X —yl=p.

Proof. Let p be any prime of the form 8k + 7 and let v = 4, v = b be the fundamental solution of v — 2v* = p.
Then, as in Theorem 4.2, it is easily shown that m = a + b and n = b generate a primitive pythagorean triple (x,y,z)
withx —y = —p.

If p is a prime of the form 8k + 7, then, as pointed out in Section 4, there is a unique primitive pythagorean triple
(x,y,z) such that x +y = p. The fact that there is no such uniqueness when discussing the difference of legs follows
from the theorem below.

Theorem 5.2. 1f m,n (m > n) generate a primitive pythagorean triple (x,y,z) then ¥ = 2m +n and N = m gen-
erate a primitive pythagorean triple (X, ¥,Z) such that |X — Y| =[x —y|.

The proof is computational and is left to the reader.
The previous two theorems make it easy to show that for each prime p of the form 8k + 7 there is an infinite num-
ber of primitive pythagorean triples (x,y,z) such that |x — y| = p. This is done by defining an infinite sequence

{
17ite)}
of primitive pythagorean triples (X/,yj,zj) such that 1x; — y;1 = p forall /.
Definition 1. Letp bea fixed prime of the form 8k # 7 and let aand b be the unique natural numbers such
that
az —2b* = p, VP < a <, ad 0 < b < /2.
Define the sequence -g Tilp) } as follows:
Let 7, (p) be the primitive pythagorean triple generated by m; =a + b and n = b. Forall /> 1, define 7;(p) to be

the primitive pythagorean triple generated by
mj = 2mjq+njq, and nj=mj-g.
Figures 2 and 3 illustrate the sequence { Tilp) }

An examination of a table of primitive pythagorean triples shows that for each prime p of the form 8k + 7 there
are primitive pythagorean triples (x,y,z) with 1x — y| = p which are not in {Tj(p)}. The next theorem will be used
to show that for each prime p of the form 8k + 7 there is in fact another infinite sequence { Tj(p}} of primitive
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pythagorean triples (x}, y, zj) such that

xf=vjl = »p
forj>17and

Xjtyf=p
forj=0

Theorem 5.3. 1§ m and n (m >.n) generate a primitive pythagorean triple (x,y,z), then M =2m —n and N =.m
generate a primitive pythagorean triangle (X, Y,Z) such that |X — Y|=x +y.
The proof is computational and is left to the reader.

Definition 2. Letp, aand b be the same as in the construction to { T,-(p)}. Define the sequence { Tj(p)}
as follows: Let 75 (p) be the triple generated by m; = a — b and nj, = b. Let T (p) be the triple generated by
my = 2mj — n; and ny =myg -
Forallj > 2, define Tj(p) to be the primitive pythagorean triple generated by
mj = 2mjq +nj_g and nj=miy.
Figures 2 and 3 illustrate the sequence % I’j(p}i‘
Theorem 5.4. Letp be aprime of the form 8k + 7. If T is the set of triples
{Titw)|i=0,1,2 -~}
and 77 is the set of triples { Tilp)li=12 } ,thenTnT'=0¢.

Proof.  Supposethereisa 7,.(p)in T and a Tg(p) in T"such that r> 17, s > 2 and 7,(p) = Tg(p). Then m, =mg
and n, = ng and hence

Meq = Np = Ng = Mg-q,
which in turn implies
2mgq+tNpqg = 2Mpq +Npog = My = Mg = 27+ 051,
and thus n,..7 = ng_¢. Hence
Tr-1(p) = Ts-1(p).

Repeating this argument a finite number of times results in one of the following cases:

Case 1. T,(p) = Teplp) if s > r+1.
Case 2. T,p) =Tip) if s=r+1.
Case 3. Trslp) = Tilp) if s <r+1

To complete the proof it suffices to show that each of these cases is impossible. In Case 1,
b =n, =Ngp = Mgopeq > Ngpq = = =My > ng = b,

a contradiction. In Case 3,
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Mp-s-1 = Nps = N7 = M
and
2Mps-1+Npgq = Mpg = m7 = 2mp = ng.
Hence
0 < npgy=-ngp<20

which is again a contradiction.
The above description of the sequences

{Tiw)}  ad {Tit0)}

gives a convenient method for constructing a triple of the sequence from the preceding triple. It is also possible to
give an explicit formula for a triple in the sequence in terms of the fundamental solution of v2 — 2v2 = p. Certain
properties of the triples in the sequence become more accessible when viewed in this way. One such property is
stated in Theorem 5.6.

Theorem 5.5. Let p be a prime of the form 8k + 1. Let u =&, v = b be the fundamental solution of

ur = 2v* = p

and let
a=a+by2.

(1) Forj >0 Tj(p) is generated by:

[0}

mj Rlael) + lfael) = Iae*")
nj = lael).

(2) Forj> 0 Tj(p)is generated by:

mi = Rlael) +I(ael) = i@
nj = Iael)
(3) Forj=0 Tj(p)is generated by:

1 =+ 1, —j*1
e’ —¢€ g+€ 1€

m/-=

22 2
o ez
;= e_j_—_e_l a+& 1€ 4,
2J2
(4) Forj > 0, Tf(p) is generated by:
M _Gitl gt it
mf = A A A X

22 2

j_gi Jrel
nj=€ €S2 .
22 2
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Proof (of (1)). By construction, T, (p) is generated by

m, = a+h = Rlae")+I(ae’)
and
n, =b = Ilfae®).
Make the induction hypothesis that 7;(p) is generated by

mj = Rlael) +I(ae’) and nj = Hae! ).
Then by construction, Tj+7(p) is generated by
mj+1 = 2Rlae) + 3i(ael) and n; = Rlael) + Iael),
By Lemma 2.1,
Rlae™ ") = R(ae) + 21(ael) and llae’") = R(ae’) + Iael),

Now it is clear that
Mjry = Rlae™ ")+ ifae’*) + Ifae™T)
and
Nj+q = /(a€j+7).
It follows directly from Lemma 2.1, that

Rlael) + ifael) = Iae')

mj

Thus the formulae in (1) hold for allj > 0. The formulae in (2) are proved in exactly the same way. The formulae in
(3) are proved by using Lemma 2.1 to get

J+1 _ =i+ J*+1  =j+1
£ € ,.€ _te

22 2 ’

mj = Rlae’) + llae’) = 1lae’") = 1" )Rla) + RI™ )Ifa) =

; i : J_Zi Y]
nj = llae’) = I(e! )Rla) + Rl Jifa) = E£=E—a+E2E p .
i = Ilae’) = I(e’ )R(a) + R(')I(a) EN: 5
The formulae in (4) follow from (2) in exactly the same manner.
In Theorem 5.4 it was shown that the sequences { T,'(p)} and { T](p)} were disjoint. With Theorem 5.5 it is

possible to show that these sequences are exhaustive in the sense that they contain every primitive pythagorean triple
(x,y,z) with x — y| = p. To prove this result, stated below as Theorem 5.6, it will be shown that if (x,y,z) has ix — y|
= p, then its generators must be the same as those listed in Theorem 5.5.

Theorem 5.6. Let p be a rational prime of the form 8k + 7. If T = (x,y,z) is a primitive pythagorean triple such
that x — y1 = p, then T is in one of the sequences { Tilp) i or {T,‘(p}} .

Proof Let v = a, v = b be the fundamental solution of u> — 2v2 = p and let a = a + b/2. If m and n are the gen-
erators of 7 = (x,y,z) then

y—x = (m—n)*—2n3.
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Hence
Nfa) = p = +N([m —n] +ny/2).

Since a is a prime, it follows that either a or @ is an assaciate of
{m—n)+n2.
If @ is an associate of (m — n) + n</2, then by definition there is an integer ¢ such that

aet = (m—n)+ny2 ,

or

—ael = (m-n)+ny2 .
This second equality is impossible because

—aet <0 < (m-n)+ny? .

Thus if a is an associate of (m — n) +n</2, then

aet = (m—n)+nyz
for some integer t. Note that £ < 0 implies that

a>ael = (m=n)+nyz = a+hy2 = a,

which is a contradiction. Thus if @ is an associate of (m — n) + n</2, there is an integer ¢ > 0 such that

aet = (m=n)+ny2 .
It is now clear that, in this case, 7 is generated by

m = Rlae') + lfae')
and
n = Ilfae'),
with ¢ >0, 50 that Tisin { 7;(p) }.
If @ is an associate of (m — n) +n\/5, then by definition, there exists an integer ¢ such that
aet = (m=n)+ny2Z,

or
—ael = (m—n)+nyZ .

This last equality is impossible, because a > 0 and aa = p imply that @ > 0, and hence

~ae’ < 0 < (m-n)+nyzZ .
Note that if

ael = (m—n)+ny2 and t

N

0!
then
a>ael=(m=n)+ny2 > a+hy2 =a>a,

which is impossible.

[ocT.
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Thus if @ is an associate of (m — n) + n\/2, then there is an integer ¢ > 0 such that
aet = (m—n)+nyzZ .
Clearly, in this cas‘e, T is generated by
m = R(ae') +I(ae') and n = Ifae'),

with ¢ > 0, so that 7 is in { Ti(p) } This completes the proof.

In the description of the two sequences { Tilp) } and { Tf(p)} it is obvious that the sequence {7’,‘(,0) } is
closely related to the unique primitive pythagorean triple (x,y,z) with x + y = p. The following theorem is used to
show that the sequence { Tilp) } is also related to the unique primitive pythagorean triple (x,y,z) withx +y = p.

Theorem 5.7. |f mand n (m > n) generate a primitive pythagorean triple (x,y,z), then M =2n+m and N =
n generate a primitive pythagorean triple (X, Y,Z) such that |X — Y|=x +y.

The proof is computational and is left to the reader.

If p is a prime of the form 8k + 7, then as in Theorem 4.2, the unique primitive pythagorean triple (x,y,z) with
x +y =p, is generated by m = a — b and n = b, where v = a, v = b is the fundamental solution of u? — 2v? = p. By
Theorem 5.7,

M=2n+m =a+bh and N=n=b
generate a primitive pythagorean triple (X, Y,Z) such that
(X=Y|=x+y = p
An examination of the generators M and N shows that (X,Y,Z) is the triple labeled 7,(p) in the discussion of
{ Tjlp) ;
6. SUMMARY

In this paper it has been shown that the sum and the difference of the legs of a primitive pythagorean triple must
be of the form 8k + 7, Conversely, if p is a prime of the form 8k + 7, there is a unique primitive pythagorean triple
(x,y,z) with x +y = p, but there are two infinite disjoint sequences of primitive pythagorean triples with the differ-
ence of the legs equal to p for each triple in the sequences. Furthermore, every primitive pythagorean triple (x,y,z)
with |x — y| = p is in one of these sequences. Figure 2 outlines a general method for constructing these triples and
Fig. 3 illustrates the procedure with p = 137. Finally, explicit formulae for the generators of each triple in the se-
quences are given in terms of the fundamental solution of v? — 2v2 = p.
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