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F(x) = x+xp+2+x2p+3+x3p+4 + >.> = x/(1-xp+1) 

in Theorem 1.1 gives 
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-xp+1 (4.4) £ C«Kn = 

n=0 

so that 
Cn - u(n;p,1)-u(n-p- 1;p,1). 

Again, p = 1 yields Fibonacci numbers, being the case of the sequence of odd integers, where Cn - Fn, as in (2.6). 
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A NOTE ON TOPOLOGIES ON FINITE SETS 

A. R, MITCHELL and R. W. MITCHELL 
The University of Texas at Arlington, Texas 76010 

In an article [1] by D. Stephen, it was shown that an upper bound for the number of elements in a non-discrete 
topology on a finite set with n elements is 2(2n~2) and moreover, that this upper bound is attainable. The follow-
ing example and theorem furnish a much easier proof of these results. 

Example. Let b, c be distinct elements of a finite set A^with n(n > 2) elements. Define 
T =\ A c X\b <EA or c £ A\ . 

NowF isa topology on X and since there are 2n~1 subsets of X containing/? and 2n~2 subsets of X which do not 
intersect j b,c j we have 

2n~1 + 2n~2 = 3l2n~2) 
elements in F. 

Theorem. If 2 is a non-discrete topology on a finite set X, then 2 is contained in a topology of the type de-
fined in the example. 

[Continued on Page 368.] 


