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p =13 or 17 (mod 20): The residue % does not appear. Exactly one square root of —1 appears.
p=10r9 (mod 20) and B(p) = 1 or 2: The residue ¥ appears. Both square roots of —1 and the residues

1—1;4@ (mod p)

do not appear.
p=10r9 (mod 20) and B(p) = 4: The residues % and

%E (mod p)

do not appear. Exactly one square root of —1 (mod p) appears.
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Fetctcheokcte
[Continued from P. 321.]
If (ab) = 1, then
(a2/b%) = 1,
(—a*/b?) = 1,
(a*/-b%) = 1,
(_az/_b2} = —7;
fa/b®) = 1,
(—a/b?) = 1,

(a/~-b%) = (a/-1),
(—a/-b%) = —(a/~1);

(a%/b) = 1,
(—a2/b) = (-1/b),
(a*/-b) = 1,

(—a*/=b) = —(-1/b) ;

(a/b) = (a/b),
(—a/b) = (a/b)(-1/b),
(a/~b) = (a/bla/-1),
(-a/-b) = —(a/b)a/~1)(—1/b).

It remains to evaluate (a/~ 7). Since (—a®/—1) = —1, therefore (a/~1) = —(—a/~1). This means that (a/~1) cannot
be defined in terms of an integer. Either {a/~7) = 7 if and only if a is positive or (a/~7) = 7 if and only if a is nega-
tive. The choice of alternative is dictated by the fact that (7/~7) = 7 and (—1/~1) = —1. Therefore, (a/~17) = 1 if and
only if a is positive.

(See Tables 1 through 4.)

[Continued on P. 328.]



