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H-258 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Sum the series 

where the summation is over all non-negative a, b, c, d such that 

12a < b+c + d 
2b < a+c + d 
2c < a+b+d 
2d < a+h+c. 

H-259 Proposed by R. FinkeI stein, Tempe, Arizona. 

Let/7 be an odd prime and m an odd integer such that m j£0 (mod/7). Let Fmp = Fp»Q. Can (Fp,Q) > 1? 

H-260 Proposed by H. Edgar, San Jose State University, San Jose, California. 

Are there infinitely many subscripts, .n, for which Fn or Ln are prime? 
Editorial Note: Good luck on this one! 

SOLUTIONS 
CORRECTION 
H-179 Proposed by D. Singmaster, Bedford College, University of London, England. 

Let/r numbers/? 7,/?£, — ,Pk be given. Setan = Ofor/7 < Qiao- 1 and define * „ by the recursion 
k 

an - Yl P'an-f f o r n > 0. 
M 

1. Find simple necessary and sufficient conditions on thepj for lim an to exist and be (a) finite and non-zero, 
(b) zero, (c) infinite. n ~* °° 

2. Are the conditions:/?/ > Ofor /= 1, 2, - , p; > 0 and 

k 

E Pi * 1 

sufficient for lim an to exist, be finite and be non-zero? 

88 
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SOSVIE SQUARE 
n-z30 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

(a) If 5 is a quadratic nonresidue of a prime/? (p £ 5), thenp\Fk(p+^, k a positive integer. 
(b) If 5 is a quadratic residue of a prime/?, then p\Fk(p^i), k a positive integer. 

Solution by J. L Hunsucker, University of Georgia, Athens, Georgia. 

In problem H-221 of this Journal {Vol. 2, No. 3), L. Carlitz gave the theorem: 
Let p be an odd prime,/? £5. If/? = 1 (mod 4) then (Fp^f/2) = Q (mod/?) for (5/p)a 1 and(Fp+i/2) = Q (mod/?) 

for (5/p) = - 1 ; if p = 3 (mod 4) then (Lp^/2) = 0 (mod /?) for f5//?; = 1 and (Lp+1/2) = 0 (mod /?) for (5/p) = - 1 . 
Using the theorem that Fn\Fkn in the case p = 1 (mod 4) and for the case p = 3 (mod 4), using in addition to 

V̂? | ^ A ? , the theorem that Ln\Fm if and only if m = 2kn we see that H-230 follows immediately from H-221. 

Also solved by P. Tracy and the Proposer. 

RECURRENT THEME 
H-231 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

1. Le t / l o ^ f t ^ i = 1, and 

Find An. 
2. Let B0=2,BX =3, and 

Find Bn . 

jf &2k+1 = A2k + &2k-1 , 
\ &2k+2 " &2k+1 - &2k • 

®2k+1 * B2k + B2k-U 
®2k+2 " #2fc+7 -^2Ar-

Solution by Robert M. Guili, San Jose State University, San Jose, California. 

1. | A - | / = 0,1,2,.-.} = { 0,1, 1,2,1,3,2,.S,.3, 8,-4 
(FJ (FJ (FJ (F5) (FJ- , 

f/V f f j fFJ (FJ (FJ-
A2k+1 = ^+2> A2k+2 = Fk+1 for £ = 0, 1,2,-. 

2. { B,\i = 0, 1, 2, • • • } = { £ * /, * 3, 7, 4, 11, 7, 18,- [ 
f l j fc8J (LJ (LJ (LJ-

(LJ (LJ (LJ (LJ (LJ-

B2k+1 = Fk+2, B2k+2 = Fk+1 for k = 0, 1,2, - . 

To derive these two solutions note that by combining the two equations 

i ^2k+1 = H2k + H2k-1 
\ ^2k+2 = H2k+1 ~ H2k, 

we §&H2k+2'= H2k-P Using this relation to replace H2k in the first equation, and H2k+1 in the second, we get 

/ ^2k+1 = H2k-3 + H2k-1 
\ H2k+2 = H2k+4 ~ H2k-2 > 

Now let m = 2k - 1, and n = 2k + 2 for k = 0, 1,2, - , which yields 
) Hm+ -j - Hm„ 7 + Hm 

\ Hn+1 ~ Mn-1 +Hn • 
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These we recognize as the generalized Fibonacci recursive relation. By applying the starting values (A 0, AUA2) 
and (B0, Bu B2) in problems 1 and 2, respectively, we get the desired result. 

Also solved by P. Tracy, A. Shannon, I/. £ Hoggatt, Jr., P. Bruckman, and the Proposer. 

USING YOUR GENERATOR 
H-232 Proposed by R. Garfield, the College of Insurance, New York, New York. 

Define a sequence of polynomials G^fx) £=0 as follows: 

1 L Gk(x)tk . 1-(x2 + 1)t2 - xt3 

1. Find a recursion formula for G^fx). 
2. Find G^fl) in terms of the Fibonacci numbers. 
3. Show that when x= 1, the sum of any 4 consecutive 6 numbers is a Lucas number. 

Solution by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

SOLUTION 1. 

- - ;
 7 = 1 + t2(x2 + 1) + t3x + tA(x2 + 1)2+ts [ ( ^ ] xlji+t6[(x+1)3+x2] 

+ ...+ t2k{[k0)(x
2+l)k+ [k~1)(x2+1)k-3x2+ [k-4

2)(x2+1)k-6x4+^ 

SOLUTION 2. 
; - ; 1 + -.—t—=l-t + t2-t3+'»+Fnt

n+1 

1-2t2-t3 (t+])(1~t-t2) t+l 1-t + t2 

= tn+1[Fn + (-l)n+1]. 

SOLUTION! 

F„ + (- Vn+ 1 + Fn+1 + (- 1)n+2 + Fn+2 + (- Dn+3 + Fn+3 + (- 1)n+4 

= 1 [an(1 + a+a + a)-hn(1 + h+b+h)] = 1 [ * " ( ^ f ^ ) +bn ( i ^ A ^ ) ] Js 

- ~n+3 . un+3 _ , -a +b - Ln+3 . 

Also solved by C. Chouteau, P. Bruckman, A. Shannon, and the Proposer. 

GENERAL-SZE 
H-233 Proposed by A. G. Shannon, NSW Institute of Technology, Broadway, and The University of New England, 

Armidale, Australia. 

The notation of Carlitz* suggests the following generalization of Fibonacci numbers. Define 
ftf = (ank+k-bnk+k)/(ak-bk), 

where k=r- 1, and a,b are the zeros of x2 -x- 1, the auxiliary polynomial of the ordinary Fibonacci numbers,/^ . 
Show that 



1976] ADVANCED PROBLEMS AND SOLUTIONS 91 

X f(nr)xn = 1/(1-(ak + bk)x+(akbk)x2) 

n=0 

Let fk = (ak*1 - bk+1 )/(a - b), and prove that 

(b) 

(Note that when r = 2 (and so k = 1),fks f'k-l~ t fk-2^0, and (b) reduces to the well known 

^- E Cr)-> 
0<2m<rc 

Solution by P. Bruckman, University of Illinois at Chicago, Chicago, Illinois. 
We form the series 

oo oo oo oo 

_ / , _ _ , nk+k ,nk+k \ „k ,B__̂  . ,k —-* . ^ 

E #'*" = E 3 r . )*" =T~I E ^ - / ^ L ^ 
/7=o /?-0 a - A a -b n=:o a -b n=0 

• T ^ I — i r - - r - f - L r ' \ o-^n-b^'r1 

ak-bk 1-akx ak_bk 1_bkx 

= | 1-xLk + (-1)kx2)-1 = { / - f e ' + ^ J k + feW**2}"' , 

which is the result of part (a). Now consider the series Six) defined as follows: 
oo 

{2s fm-s fn-m-s , 

n=0 0<m+s<n then 

sw-E*" E (7)(n-|B)£/«3T 
n=0 0<m+s<n 

oo n n-m 

*<*> - E E E *"(m
s )["~s

m) t-iCPrm-s 
n=0 m=0 s=0 

oo n n 
_ _ _ #. m \ / n ~ m \ r2s-2mr2m-sfn-

' 2^ 2^ 2^ X [s-m)[s-m j'k'l fk-2 fk 
n=0 m=0 s~m 

oo n n oo oo n 

E E E e(n-m's) =Y,T,i:°(°'>"'S> 
n=0 m~0 s=m m-0 n-m s-m 

oo oo 

m=0 s=m n-s 

£ . ' " ^ ( : )(";•) tiCifnk 
tn,s,n-0 

- E *m+s (7) £»«3 E (";•) w = 
m,s=0 /7«0 
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/ 2 \m 

m=0 

•n-*r'\i-**-gjt}" 

= \ 1 -x(Fk+1 + Fk„1) + x2(Fk+1Fk-1- F%)\ (Fk\$thekth Fibonacci number) 

= {1-Lkx + (- 1)kx2 \ = Y< fnix" > bV Part <a>" 
n=*0 

Comparing coefficients of the power series, this establishes part (b). N.B. F(n+uk/Fk = fff{ 

Also solved by the Proposer. 

Editorial Note: Dale Miller's name appeared incorrectly in H-237. 

Continued from page 829 ******* 
Returning to (2) above, we can generate multigradesof higher orders. (Forthe standard method employed, see below.1) 
I give now, as an example, a third-order multigrade: 

Arf + Asff-An-^ +("i1 A-2 ) F™ + A7(2Fn~ F7)
m + A2(2Fn~F2)

m -An,1(2Fn- Fn^)m 

+ [%%-2)f^ = A1(Fn-F1)
m+A2(Fn-F2)

m-~An„1(Fn^ 0m 

+ A1{Fn + F1)
m+A2(Fn + F2)

m.»An-1(Fn + Fn„1)+ ( s A-2^(2Fn)
m 

(where m= 1,2,3). 

[\ have added Fn to each term in (2), and added the L.H.S. totals to the original R.H.S. and vice versa.] Expressed 
more tidily, the above becomes 

n-1 
S A-2 
1 

A1[(F1)
m + (2Fn - F7)

mJ +A2[(F2)
m + (2Fn - F2)

ml»An.1[(Fn.1)
m - (2Fn - Fn^)m] +2 

= A rf(Fn- F7)
m + (Fn + F1)

m] +A2[(Fn - F2)
m + (Fn + F2)

m] -An„7[(Fn - Fn^)m + (Fn + Fn^)m] 

+ ( s A-2 \[(2Fn)
m + 0m] (where m = 1,2, 3). 

Fm rn 

Again, if we add any quantity B to each term, the final 0 terms each become Bm. 
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