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1. INTRODUCTION 

Several techniques are known for solving general linear difference equations [1, 2, 3] . We are not concerned here 
with specific techniques for actually solving difference equations (whether numerically or symbolically}. Rather, 
the main problem dealt with is that of determining the order (number of initial conditions) of systems of two simul-
taneous linear difference equations in two variables. Since the order for non-homogeneous equations is that of the 
associated homogeneous equations, we content ourselves with the homogeneous case. This paper examines the defin-
ition of two-dimensional sequences by a system of two simultaneous linear difference equations in two variables and 
the initial value problem is solved algorithmically. 

While it is relatively simple in the one-dimensional case to specify suitable initial conditions, the same problem in 
two dimensions is considerably more complicated. The traditional algebraic approach relies upon the representation 
of the elements of two-dimensional sequences as the matrix product of two geometric progressions, one considered 
as a row matrix, the other asa column matrix. 

In the author's algorithmic approach a suitably defined finite subset of elements of the sequence is selected. Using 
constraints determined by the difference equations, certain elements of the subset are chosen whose values are de-
termined by the values of the remaining elements of the subset that in turn are determined by initial values. Induc-
tion is used to prove that the entire sequence is determined by the initial values. The algorithm has been programmed 
in FORTRAN. 

2. THE DEFINITION OF TWO-DIMENSIONAL FIBONACCI SEQUENCES 

Any linear difference equation in one variable can be written in the following form: 
n 

(1) cJ(i + mQ) = Yl CkW + mic) , 
k=1 

where / is a function on the integers, i.e., a sequence, M = (irik) is a vector with n + 1 integer components, and the 
c'% are non-zero coefficients and are distinct. For some purposes, it is more convenient to express linear difference 
equations diagrammatically rather than strictly algebraically as in (1). For example, the diagram, ox pattern as we 
will call it, for the Fibonacci recursion relation is shown in Fig. 1. The two variable equation corresponding to (1) is 

n 

(2) c0f(i + m0fj-f-n0)=J2ckf(/ + mk,l-hnk)/ 

k=1 

where f is a function of two integer variables, m^ corresponds to the column index for the kth term, and % corres-
ponds to the row index. M = (m^) and N - (n^) are vectors with n + 1 integer components with (m-,, n/) / (mj, nj) 
if / V / The c's are non-zero coefficients. 

J _i i A ioJ 
Figure 1 Pattern for the Fibonacci Recursion Relation 
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One of the simplest non-trivial two dimensional sequences is the "Fibonacci Multiplication Table," derived from 
the simultaneous equations 
(3) f(i + 2,j) = f(i+1,j) + f(i,j) 

(4) Hhi + 2) = f(i,j+1) + f(i,j). 

The pattern for Eq. (3) is 

and the pattern for Eq. (4) is 
b0 = ht+b2 . 

Equations (3) and (4) with initial conditions 
m o) = o, no. i) = o, 
f(lO) = Q, HID = 7, 

lead to a sequence with the property that 
(5) f(1,j) = f(i,1)f(l,j). 

Since row 1 and column 1 contain ordinary Fibonacci sequences, the sequence may be looked at as a multiplication 
table for the Fibonacci numbers. 

3. INITIAL CONDITIONS FOR LINEAR DIFFERENCE EQUATIONS 
In the one-dimensional case, the order is easily determined by inspection (see [4]). If the equation is written in 

the form of (1), the order, which we will call Ng is 
(6) Ng = max |m/ - /wy | . 

This number Ng is also one less than the width in grid squares of the pattern for the equation. 
The set G = gi< giving a possibility for the relative positions of the initial values will be diagrammed on a grid 

in analogy to the way patterns are diagrammed. For example, the pattern 
H I K l H>i: ao s *i +a* 

requires four initial values, since the width is 5. One valid ,g-pattern for these initial values is 

In the traditional algebraic approach to initial conditions in two dimensions, we represent the solution by a matrix 
product of two geometric progressions. If we use R for the horizontal ratio and S for the vertical ratio, then the ana-
log of Eq. (2) is 

(7) c0R
m°Sn* = £ ckR

mkSnk . 

If we form the Eqs. (7) for two patterns, and let the first pattern have degree dx in R and et in S, and the equation 
for the second pattern have degree d2 in R and e2 in S, then solving the equations simultaneously using the resultant 
(see [5]), we find there are at most Mg initial conditions required, where 
(8) Mg = (dt + d2)max (eue2)m\n(du d2). 

This method may require much tedious algebraic manipulation. Also, the theory does not provide in general even one 
valid ^-pattern. The algorithm described in the following section solves the initial value problem without relying on 
geometric progressions. Also, it has the advantage of yielding a family of valid ^-patterns. 
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4. AN EFFICIENT ALGORITHM FOR DETERMINING SETS 
OF INITIAL CONDITIONS IN TWO DIMENSIONS 

Given two patterns for two linear difference equations in two unknowns, the algorithm described in this section 
first constructs a special set of adjacent grid squares (corresponding to the elements of a two-dimensional sequence) 
called a starting set Then the number of initial conditions necessary and sufficient to determine the values for all of 
the elements in the starting set is calculated by matrix operations on the coefficients of equations implied by the 
difference equations. A form of two-dimensional induction is attempted to check whether the values for the entire 
sequence can be determined from the equations already solved and the values for the elements of the starting set. If 
the induction step fails, either the equations were not independent, or the starting set was not large enough. Assum-
ing the latter, the starting set is enlarged and the procedure is repeated until either the induction step succeeds, or 
too many initial conditions are required for the equations to have been independent. 

ALGORITHM FOR THE TWO-DIMENSIONAL INITIAL VALUE PROBLEM 

Given two patterns with elements labelled a0, at, - , an and h0, bu •-, bm, representing two linear difference 
equations in two variables, find Ng, the number of initial values necessary and sufficient to define a complete two-
dimensional sequence and find at least one valid ̂ -pattern if Ng is finite. 

STEP 1. (Initialize the first starting set.) Fix the position of the pattern whose squares are labelled witha's on a 
grid. Let S be the set of all grid squares necessary and sufficient to represent 

m 
ai ' b° s ]C bk 

k=*1 

for i = 0, 7, —, n. (Note that the squares representing a0, au •«, an are in S.) 
STEP 2. (Check for horizontal gaps.) If there is no element of S between two elements of S in the same row of 

the grid, then go to Step 4. 
STEP 3. (Augment S to reduce a horizontal gap.) Replace S by S u R, where R is the set of all grid squares one 

grid square to the right of a grid square in S. Go to Step 2. 
STEP 4. (Check for vertical connectedness.) If each row containing an element of S (except the bottom-most) 

contains an element of S that is vertically adjacent to an element of S in the next row down, then go to Step 6. 
STEP 5. (Augment S to reduce a vertical gap.) Replace SbySuB, where B is the set of all grid squares one grid 

square below an element of & Go to Step 2. 
STEP 6. (Set up equations.) Associate the ith grid square in S with the variable x,. Form M'as a coefficient ma-

trix with columns representing the variables x; and whose rows are the coefficients of all possible equations deter-
mined by the two patterns and involving only elements of the starting set S. 

STEP 7. (Echelonize M'.) Put M' into echelon form M. 
STEP 8. (Count free variables.) Label the distinguished column variables of M withx/s, and the free-variable col-

umns with g,'$. Let ng = the number of g/%. (Note that ng is also the difference between the number of columns and 
the number of non-zero rows of M,) 

STEP 9. (Check for dependent equations.) \ing>Mg from Eq. (8) then stop. Ng - <=» . 
STEP 10. (Check horizontal induction.) Check whether M is row-equivalent to a matrix G, in echelon form, all of 

whose free variables correspond to grid squares of S that have a grid square corresponding to a distinguished variable 
on the right. (In forming G, columns of M may be interchanged if a non-zero value appears in both columns for any 
one row.) If so, go to Step 12. 

STEP 11. (Augments.) Replace S by S u T, where T is the set of all elements that are one grid square left of, 
right of, above, or below an element of S. Go to Step 6. 

STEP 12. (Check vertical induction.) Check whether M is row equivalent to an echelon matrix H all of whose free 
variables correspond to grid squares that have a grid square corresponding to a distinguished variable one grid square 
DBIOW. If not, go to Step 11. Otherwise, the algorithm terminates, Ng is equal to the ng calculated in Step 8. The 
grid squares correspond to the #&'s for the matrices M, G, or H, form valid ^-patterns. • 
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The goal of Steps 1 through 5 is to find a starting set with the following properties: 
(1) The set should be connected, that is, it should be possible to go from each element to every other element re-

maining within the set and using only moves of one square horizontally or vertically. 
(2) Every element of S should appear in at least one equation formed in Step 6. 

The reason behind requirement (1) is that it has been found empirically that when it is satisfied the algorithm never 
needs to execute Step 11 and repeat Step 6 and the following steps. This has not been proved, however. The reason 
for requirement (2) is to avoid introducing extraneous free variables into the starting set If an element appears in no 
equations for a particular starting set, that element will always appear to be a free variable, even though it would not 
necessarily be free if a larger starting set were used that allowed it to appear in an equation. 

We now give a proof that the number ng calculated in Step 8 is always a lower bound on the number of initial con-
ditions necessary to define a complete sequence. 

Proof. If Step 12 is reached and is successful, then ng is a sufficient number of initial conditions, and all the 
values for elements of the sequence outside the starting set are derivable from the values of the starting set given ng 

initial conditions in the positions of the free variables (the g'$). Including equations involving elements outside the 
starting set would not add any new information to the system. If either the horizontal or the vertical induction fails, 
and all bordering values are not deriveable, then, since each 57 is necessary because at least onexy depends on it, ng is 
a lower bound on the number of initial conditions required. • 

The procedure must terminate (i.e., is an algorithm) because, if a finite number of initial conditions exists, the start-
ing set must eventually include at least one possible set of locations for those initial conditions, since all of the ele-
ments in the sequence are eventually included in the starting set 

The claim for efficiency in the title of this section is based on the observation that, for all cases tried, the number 
of zero rows in the matrix M, the echelon form of M\ is (N3 + 1)(N5 + 1), where N3 is the number of times Step 3 
was executed in constructing S, and N5 is the number of times Step 5 was executed. This means that, if deriving val-
ues for the elements of a two-dimensional sequence is the object of discovering the number Ng and a valid ̂ -pattern, 
most of the rows of M, with the exception of a limited number of zero rows, are useful for back-substitution in M 
given values for the g,'s. Also, using the two-dimensional induction technique, the value for any element in the se-
quence can be determined using only repeated back-substitution inM. 

As a specific example of the algorithm, we give the results for the two patterns shown in Fig. 2. The number of in-
itial conditions ng for this case is 3, and a valid ^-pattern is shown in Fig. 3. A portion of the two-dimensional se-
quence determined by gv = Q, g2 = I gz = 2 is shown in Fig. 4. More detail on the operation of the algorithm, as well 
as the results for many other cases, are given in [6] „ 
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Fig. 2 Patterns for f(m + 2,n+V = f(m, n+3) + f(m+1,n + 1) + f(m,n) F j g 3 A v a | j d g . p a t t e m 

and f(m,n) = f(m, n + 3) + f(m + 1,n+1) + f(m + 7, n) f o r " t n e p a t t e m s jn Fjg> 2 
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Fig. 4 A portion of a two-dimensional sequence satisfying the patterns shown in 
Fig. 2. The initial values are circled. 



82 ON THE ORDER OF SYSTEMS OF TWO SIMULTANEOUS C P R 1 0 7 R 
LINEAR DIFFERENCE EQUATIONS IN TWO VARIABLES |,fcB" i a , b 

REFERENCES 

1. F. Chorlton, Ordinary Differential and Difference Equations, Theory and Applications, Princeton, N. 1 , Van 
Nostrand, 1965, Chapters 8-10. 

2. H. Levy and F. Lessman, Finite Difference Equations, New York, Mac Mi I Ian, 1961, Chapters 4-6 . 
3. C. H. Richardson, An Introduction to the Calculus of Finite Differences, Princeton, N. J. .Vast Nostran.d, 1954, 

Chapter VI. 
4. Chorlton, p. 186. 
5. F. S. Macaulay, The Algebraic Theory of Modular Systems, London, Cambridge University Press, 1916, pp* 4-16. 
6. R. G. Babb, "On the Order of Systems of Two Simultaneous Linear Difference Equations in Two Variables," 

M. Math Thesis, Univ. of Waterloo, Waterloo, Ontario, May 1974 (available by Xerox copy from the Fibonacci 
Association). 

Continued from page 66* ******* 
If we add any quantity B to each term, the above becomes 

(x* +-B)m-3[(x+ 1)*+B]m + 3[(x+2)* +B]m- [3[(x+2)2 - (x + V2J + x*+B]m 

= -Bm - 3[x* - 4(x + 1)* + 3(x + 2)* + B]m + 3[x*-3(x + V2 - 4{x+2)% +B]m + [3[(x+2P - (x+ I)2] +B]m 

(where/?r= 1, 2). 
Finally, take the series in which 

Fn = An-1Fn-1 + An-2Fn-2'"A2F2 + A1F1. 
We conjecture that 

AiFf + A2F? + A3F? -An_2F™2+ An.1/%, + ( s ' A -2 ) f „m 

(2) , n 1 \ 
= A1<Fn-Fir+A2(Fn-F2j

m +A3(Fn-F3)
m...An.2<Fn-Fn_2r+An_1(Fn-Fn.1)

m+ ( 2 A-2)^ 

(where/n = 1,2). 
Proof: Whenm = 1, 

LH.S. = ( 2 A-1 \Fn. 

When/w= 1, 

nM.S. = (A1+A2+A3-An.2+An_1)Fn-(A1F1+A2F2+A3F3"An.2Fn.2+An.1Fn.1) = { "z A-I)F„. 

:. LH.S. = R.H.S. 
When m = 2, 

LH.S. = AjF2 + A2Fl + A3F2
3- An_2F2

n-2+An_iF*_i + ( "x A -2 } / % 

R.H.S. = A1F
2-2A1F1Fn+A1F

2 + A2Fn-2A2F2Fn+A2F2 

+ A3F
2

n-2A3F3Fn+A3F
2

3+-

+ An-1F
2-2An-1Fn-1Fn + An-,F

2., 

"iAF2
n-2Fn>Fn+A1F2

1+ A2F2
2 + A3F§ - An. 1F2., n-1 

2 
7 

£ A-2 \F2 + A1F
2 + A2F§ + A3F§-An-1F

2-, = LH.S. 

If we add any quantity B to each term, we get 

AjtFj + Br +A2(F2 + B)m + A3(F3 + B)m-A„.2(Fn-2 + B)m+An-1{Fn.1 + B)m+[ni1 A-2^ (Fn+B)m 

= A1(Fn-F1+B)m+A2(Fn-F2+B)m+A3(Fn-F3+B)m-An.2(Fn-Fn.2+Br+An.1(Fn-Fn.1+Br 

+ ( i A-2)jBm (wherem = 1,2). Continued on page 92, 


