Therefore mathematical induction yields the result. Q.E.D.
An immediate consequence of Corollary 1 and Lemma 2 is
Corollary 2. Either $D(n)$ is identically zero or never zero.
Zierler proves the following [2].
Lemma 3. Let $f(x)$ be a characteristic polynomial over the field F for the sequence

$$
v=\left\{v_{n}\right\} \subseteq F, \quad V \not \equiv 0
$$

and let $g(x)$ be the minimum polynomial for V. Then
(i)
$g(x) \mid f(x)$,
(ii) $h(x) g(x)$ is also a characteristic polynomial for V, where $h(x)$ is any monic polynomial over F.

To complete the proof of Theorem 1 we note that Lemma 3 implies that V satisfies a lower order recursion if and only if some $f_{k}(x)$ as defined in (4) is a characteristic polynomial for V. But then Lemma 2 and Corollary 2 imply that V satisfies a lower order recursion if and only if $D(0)=0$.

REFERENCES

1. M. Hall, "An Isomorphism Between Linear Recurring Sequences and Algebraic Rings," Amer. Math. Monthly, 44 (1938), pp. 196-217.
2. N. Zierler, "Linear Recurring Sequences," J. Soc. Indust. Appl. Math., 7 (1959), pp. 31-48.

大为

A FIBONACCI PLEASANTRY

LEON BANKOFF
 Los Angeles, California 90048

In the Fibonacci sequence $F_{0}=0, F_{1}=1, \ldots, F_{n}=F_{n-1}+F_{n-2}$, list the sums $F_{n}+n$ in ascending order of n and note the second differences. Do the same with $F_{n}-n$.

$$
\begin{aligned}
0+0 & =0 \\
1+1 & =2
\end{aligned}>2>-1 .
$$

[Continued on page 41.]

