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Therefore mathematical induction yields the result Q.E.D. 
An immediate consequence of Corollary 1 and Lemma 2 is 
Corollary 2. Either D(n) is identically zero or never zero. 
Zierler proves the following [2] . 
Lemma 3. Let fix) be a characteristic polynomial over the field F for the sequence 

Vss{*n\ ±F, VjkO, 

and \e\g(x) be the minimum polynomial for V. Then 
(i) g(x)\f(x), 
(••) hixfg(x) is also a characteristic polynomial for V, where h(x) is any monic polynomial over F. 

To complete the proof of Theorem 1 we note that Lemma 3 implies that l/satisfies a lower order recursion if and 
only if some f^ix) as defined in (4) is a characteristic polynomial for V. But then Lemma 2 and Corollary 2 imply 
that V satisfies a lower order recursion if and only if D(0) - 0. 
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A FIBONACCI PLEASANTRY 

LEON BANSCOFF 
Los Angeles, California 90048 

In the Fibonacci sequence FQ ^ 0, Fx = 1, —, Fn = Fn„i + Fn„2, list the sums Fn + n in ascending order of n and 
note the second differences. Do the same with Fn - n. 
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