6. Coefficient of $-2 m$

$$
\begin{aligned}
& F_{s}^{3} F_{s-1}+F_{s-1}^{2} F_{s} F_{s+1}=F_{s-1} F_{s}\left[F_{s}^{2}+F_{s-1} F_{s+1}\right]=F_{s-1} F_{s}\left[F_{s}\left(F_{s+2}-F_{s+1}\right)+F_{s-1} F_{s+1}\right] \\
&=F_{s-1} F_{s}\left[F_{s} F_{s+2}-F_{s+1}\left(F_{s}-F_{s-1}\right)\right]=F_{s-1} F_{s}\left(F_{s} F_{s+2}-F_{s+1} F_{s-2}\right) \\
&\left(F_{1}^{2}+F_{2}^{2}+\ldots+F_{s-1}^{2}\right)\left(1+2 F_{1} F_{2}+2 F_{s} F_{3}+\ldots+2 F_{s-1} F_{s}=F_{s-1} F_{s}\left[F_{s} F_{s+2}-F_{s+1} F_{s-2}\right]\right.
\end{aligned}
$$

In proving this identity the following Fibonacci identities were used:
(a)
(b)

$$
\begin{gathered}
1+2 F_{1} F_{2}+\ldots+2 F_{s-1} F_{s}=F_{s} F_{s+2}-F_{s+1} F_{s-2} \\
F_{1}^{2}+F_{2}^{2}+\ldots+F_{s}^{2}=F_{s-1} F_{s} \\
F_{s-1} F_{s+1}=F_{s}^{2}+(-1)^{s}
\end{gathered}
$$

(c)

*** *

A MORE GENERAL FIBONACCI MULTIGRADE

DONALDCROSS
St. Luke's College, Exeter, England

In a recent article I gave examples of multigrades based on Fibonacci series in which

$$
F_{n+2}=F_{n+1}+F_{n}
$$

Here I first give a more general multigrade for series in which
Consider

$$
F_{n+2}=y F_{n+1}+x F_{n} .
$$

By inspection we notice that

$$
\begin{array}{llllll}
1 & 3 & 7 & 17 & 47 & \text { (where } x=1, y=2 \text {). } . ~
\end{array}
$$

$$
\begin{gathered}
1^{m}+3^{m}+3^{m}+7^{m}=0^{m}+4^{m}+4^{m}+6^{m} \\
3^{m}+7^{m}+7^{m}+17^{m}=0^{m}+10^{m}+10^{m}+14^{m}, \text { etc. } \\
\text { (where } m=1,2) .
\end{gathered}
$$

We can look at other series of a like kind:

$$
\begin{array}{llllll}
1 & 3 & 10 & 33 & 109 & \text { (where } x=1, y=3 \text {). }
\end{array}
$$

Here

$$
\begin{aligned}
& 1^{m}+3^{m}+3^{m}+3^{m}+10^{m}+10^{m}=0^{m}+0^{m}+7^{m}+7^{m}+7^{m}+9^{m} \\
& 3^{m}+10^{m}+10^{m}+10^{m}+33^{m}+33^{m}=0^{m}+0^{m}+23^{m}+23^{m}+23^{m}+30^{m}, \text { etc. } \\
& \text { (where } m=1,2) \\
& 1 \quad 3 \quad 11 \quad 39 \quad 139 \quad \text { (where } x=2, y=3 \text {). }
\end{aligned}
$$

Here

$$
\begin{aligned}
& 1^{m}+1^{m}+3^{m}+3^{m}+3^{m}+11^{m}+11^{m}+11^{m}=0^{m}+0^{m}+0^{m}+8^{m}+8^{m}+8^{m}+10^{m}+10^{m} \\
& 3^{m}+3^{m}+11^{m}+11^{m}+11^{m}+39^{m}+39^{m}+39^{m}=0^{m}+0^{m}+0^{m}+28^{m}+28^{m}+28^{m}+36^{m}+36^{m}, \text { etc. }
\end{aligned}
$$ (where $m=1,2$)

The general series

$$
a \quad b \quad a x+b y \quad b x+a x y+b y^{2}
$$

gives

$$
\begin{gathered}
x(a)^{m}+y(b)^{m}+(x+y-2)(a x+b y)^{m}=(x+y-2) 0^{m}+y(a x+b y-b)^{m}+x(a x+b y-a)^{m} \\
\text { (where } m=1,2) .
\end{gathered}
$$

Continued on page 66.

