Hence $g(r)=v$. Suppose $g^{k}(r)=v$ whenever $v c^{k} \leqslant r<(v+1) c^{k}$. Suppose, in addition, that $v c^{k+1} \leqslant r_{0}<(v+1) c^{k+1}$. Then

$$
g^{k+1}\left(r_{0}\right)=g^{k}\left(\left[\frac{r_{0}}{c}\right]\right) \quad \text { and } \quad v c^{k} \leqslant \frac{r_{0}}{c}<(v+1) c^{k}
$$

It follows that

$$
v c^{k} \leqslant \frac{r_{0}}{c}<(v+1) c^{k}
$$

Hence by the induction hypothesis

$$
g^{k+1}\left(r_{0}\right)=g^{k} \cdot g\left(r_{0}\right)=g^{k}\left(\left[\frac{r_{0}}{c}\right]\right)=v .
$$

To prove Theorem 1, employ Theorem 2 to obtain positive integers n and m such that

$$
v<\frac{f^{n}(u)}{c^{m}}<v+1
$$

and apply Lemma 4.

REFERENCE

1. Ivan Niven, "Irrational Numbers," The Carus Mathematical Monographs, No. 11, published by The Mathematical Association of America.

Continued from page 22.

We can add any quantity B to each term:
$x(a+B)^{m}+y(b+B)^{m}+(x+y-2)(a x+b y+B)^{m}=(x+y-2) B^{m}+y(a x+b y+B-b)^{m}+x(a x+b y+B-a)^{m}$ (where $m=1,2$).
A special case of a Fibonacci-type series is

$$
1^{m} \quad 2^{m} \quad 3^{m} \quad \cdots \quad n^{m}
$$

Consider the series when $m=2$:
(1)

1	4	9	16	25

where

$$
F_{n}=3\left(F_{n-1}-F_{n-2}\right)+F_{n-3}
$$

[we obtain our coefficients from Pascal's Triangle], i.e.,

$$
(x+3)^{2}=3\left[(x+2)^{2}-(x+1)^{2}\right]+x^{2}
$$

I have found by conjecture that

$$
1^{m}-4^{m}-4^{m}-4^{m}+9^{m}+9^{m}+9^{m}-16^{m}=-0^{m}-12^{m}-12^{m}-12^{m}+7^{m}+7^{m}+7^{m}+15^{m}
$$

(where $m=1,2$).
[I hope the reader will accept the strange - 0^{m} for the time being.] If we express the series (1) above in the form
$a \quad b \quad 3(c-b)+a \quad$ etc.,
our multigrade appears as follows

$$
a^{m}-3 b^{m}+3 c^{m}-[3(c-b)+a]^{m}=-0^{m}-3(3 c-4 b+a)^{m}+3(2 c-3 b+a)^{m}+[3(c-b)]^{m}
$$

(where $m=1,2$).
We could, of course, write the above as

$$
\begin{aligned}
& \left(x^{2}\right)^{m}-3\left[(x+1)^{2}\right]^{m}+3\left[(x+2)^{2}\right]^{m}-\left[3\left[(x+2)^{2}-(x+1)^{2}\right]+x^{2}\right]^{m} \\
& \quad=-0^{m}-3\left[x^{2}-4(x+1)^{2}+3(x+2)^{2}\right]^{m}+3\left[x^{2}-3(x+1)^{2}-4(x+2)^{2}\right]^{m}+\left[3\left[(x+2)^{2}-(x+1)^{2}\right]^{m}\right. \\
& \text { (where } m=1,2) . \\
& \text { Continued on page 82. }
\end{aligned}
$$

