$$
\begin{aligned}
& =\sum_{m, s=0}^{\infty} x^{m+s}\binom{m}{s} f_{k-1}^{2 s} f_{k-2}^{m-s}\left(1-x f_{k}\right)^{-s-1} \\
& =\left(1-x f_{k}\right)^{-1} \sum_{m=0}^{\infty} x^{m} f_{k-2}^{m} \sum_{s=0}^{\infty}\binom{m}{s}\left\{\frac{x f_{k-1}^{2}}{f_{k-2}\left(1-x f_{k}\right)}\right\}^{s} \\
& =\left(1-x f_{k}\right)^{-1} \sum_{m=0}^{\infty}\left(x f_{k-2}\right)^{m}\left\{1+\frac{x f_{k-1}^{2}}{f_{k-2}\left(1-x f_{k}\right)}\right\}^{m} \\
& =\left(1-x f_{k}\right)^{-1}\left\{1-x f_{k-2}-\frac{x^{2} f_{k-1}^{2}}{1-x f_{k}}\right\}^{-1} \\
& =\left\{\left(1-x f_{k}\right)\left(1-x f_{k-2}^{\prime}\right)-x^{2} f_{k-1}^{2}\right\}^{-1} \\
& =\left\{1-x\left(f_{k}+f_{k-2}\right)+x^{2}\left(f_{k} f_{k-2}-f_{k-1}^{2}\right)\right\}^{-1} \\
& =\left\{1-x\left(F_{k+1}+F_{k-1}\right)+x^{2}\left(F_{k+1} F_{k-1}-F_{k}^{2}\right)\right\}^{-1}\left(F_{k} \text { is the } k^{t h}\right. \text { Fibo nacci number) } \\
& =\left\{1-L_{k} x+(-1)^{k} x^{2}\right\}^{-1}=\sum_{n=0}^{\infty} f_{n}^{(r)} x^{n}, \text { by part (a). }
\end{aligned}
$$

Comparing coefficients of the power series, this establishes part (b). N.B. $F_{(n+1) k} / F_{k}=f_{n}^{(r)}$.

Also solved by the Proposer.

Editorial Note: Dale Miller's name appeared incorrectly in $\mathrm{H}-237$.

Continued from page 82.

Returning to (2) above, we can generate multigrades of higher orders. (For the standard method employed, see below.!) I give now, as an example, a third-order multigrade:

$$
\begin{gathered}
A_{1} F_{1}^{m}+A_{2} F_{2}^{m} \cdots A_{n-1} F_{n-1}^{m}+\left(\sum_{1}^{n-1} A-2\right) F_{n}^{m}+A_{1}\left(2 F_{n}-F_{1}\right)^{m}+A_{2}\left(2 F_{n}-F_{2}\right)^{m} \ldots A_{n-1}\left(2 F_{n}-F_{n-1}\right)^{m} \\
+\left(\sum_{1}^{n-1} A-2\right) F_{n}^{m}=A_{1}\left(F_{n}-F_{1}\right)^{m}+A_{2}\left(F_{n}-F_{2}\right)^{m} \ldots A_{n-1}\left(F_{n}-F_{n-1}\right)^{m}+\left(\sum_{1}^{n-1} A-2\right) 0^{m} \\
+A_{1}\left(F_{n}+F_{1}\right)^{m}+A_{2}\left(F_{n}+F_{2}\right)^{m} \cdots A_{n-1}\left(F_{n}+F_{n-1}\right)+\left(\sum_{1}^{n-1} A-2\right)\left(2 F_{n}\right)^{m} \\
\text { (where } m=1,2,3) .
\end{gathered}
$$

[1 have added F_{n} to each term in (2), and added the L.H.S. totals to the original R.H.S. and vice versa.] Expressed more tidily, the above becomes

$$
\begin{aligned}
& A_{1}\left[\left(F_{1}\right)^{m}+\left(2 F_{n}-F_{1}\right)^{m}\right]+A_{2}\left[\left(F_{2}\right)^{m}+\left(2 F_{n}-F_{2}\right)^{m}\right] \ldots A_{n-1}\left[\left(F_{n-1}\right)^{m}-\left(2 F_{n}-F_{n-1}\right)^{m}\right]+2\left[\sum_{1}^{n-1} A-2\right] F_{n}^{m} \\
& =A_{1}\left[\left(F_{n}-F_{1}\right)^{m}+\left(F_{n}+F_{1}\right)^{m}\right]+A_{2}\left[\left(F_{n}-F_{2}\right)^{m}+\left(F_{n}+F_{2}\right)^{m}\right] \ldots A_{n-1}\left[\left(F_{n}-F_{n-1}\right)^{m}+\left(F_{n}+F_{n-1}\right)^{m}\right] \\
& +\left(\begin{array}{c}
\left.\left.\sum_{1}^{n-1} A-2\right)\left[\left(2 F_{n}\right)^{m}+0^{m}\right] \quad \text { (where } m=1,2,3\right) .
\end{array}\right.
\end{aligned}
$$

Again, if we add any quantity B to each term, the final 0^{m} terms each become B^{m}.

REFERENCE

1. M. Kraitchik, Mathematical Recreations, George Allen \& Unwin, London, 1960, page 79.
