GENERALIZED BELL NUMBERS

E. A. ENNEKING and J. C. AHUJA
 Portland State University, Portland, Oregon 92707

1. INTRODUCTION

In the notation of Riordan [2], the Stirling numbers of the second kind, $S(n, k)$, with arguments n and k are defined by the relation

$$
\begin{equation*}
t^{n}=\sum_{k=0}^{n} S(n, k)(t)_{k}, \quad n>0 \tag{1.1}
\end{equation*}
$$

where $(t)_{n}=t(t-1) \cdots(t-n+1)$ is the factorial power function. They have been utilized by Tate and Goen [4] in obtaining the distribution of the sum of zero-truncated Poisson random variables where

$$
\begin{equation*}
\left(e^{t}-1\right)^{k} / k!=\sum_{n=k}^{\infty} S(n, k) t^{n} / n! \tag{1.2}
\end{equation*}
$$

The Bell numbers or exponential numbers B_{n} can be expressed as

$$
\begin{equation*}
B_{n}=\sum_{k=0}^{n} S(n, k), \quad n \geqslant 0 \tag{1.3}
\end{equation*}
$$

with $B_{0} \equiv 1$. They have been investigated by many authors: see [1] and [3] for lists of references. Uppuluri and Carpenter [7] have recently studied the moment properties of the probability distribution defined by

$$
\begin{equation*}
p(k)=S(n, k) / B_{n}, \quad k=1,2, \cdots, n, \tag{1.4}
\end{equation*}
$$

and give
(1.5)

$$
\sum_{k=1}^{n} k^{r} S(n, k)=\sum_{i=1}^{r}\binom{r}{i} c_{i} B_{n+r-i}
$$

where the sequence $\left\{C_{n}, n=0,1, \cdots\right\}$ is defined by

$$
\begin{equation*}
\sum_{k=0}^{\infty} c_{k} x^{k} / k!=\exp \left(1-e^{x}\right) \tag{1.6}
\end{equation*}
$$

Tate and Goen [4] have also derived the n-fold convolution of independent random variables having the Poisson distribution truncated on the left at ' c ' in terms of the generalized Stirling numbers of the second kind, $d_{c}(n, k)$ given by

$$
\begin{equation*}
\left(e^{t}-1-t-\cdots-t^{c} / c!\right)^{k} / k!=\sum_{n=k(c+1)}^{\infty} d_{c}(n, k) t^{n} / n! \tag{1.7}
\end{equation*}
$$

where $d_{c}(n, k)=0$ for $n<k(c+1)$. They give an explicit representation for $d_{c}(n, k)$ too complicated to reproduce here. The $d_{c}(n, k)$ can be shown to satisfy the recurrence formula
(1.8)
where $d_{c}(0,0)=1$ for all c.

$$
d_{c}(n+1, k)=k d_{c}(n, k)+\binom{n}{c} d_{c}(n-c, k-1),
$$

Definition 1. We define the numbers $B_{c}(n)$ given by

$$
\begin{equation*}
B_{c}(n)=\sum_{k=0}^{n} d_{c}(n, k) \tag{1.9}
\end{equation*}
$$

for $c \geqslant 1$ and $n \geqslant 0$ as generalized Bell numbers. It may be noted that $B_{0}(n)=B_{n}$.
Definition 2. A random variable X is said to have the generalized Bell distribution (GBD) if its probability function is given by

$$
\begin{equation*}
p_{c}(k)=d_{c}(n, k) / B_{c}(n), \quad k=0,1, \cdots, n . \tag{1.10}
\end{equation*}
$$

It may also be noted that when $c=0$ and $n>0(1.10)$ reduces to (1.4) as then $d_{0}(n, 0)=0$.
In this paper we investigate some properties of the numbers $B_{c}(n)$ and provide recurrence relations for the ordinary and factorial moments of the GBD. It is shown that the related results obtained by Uppuluri and Carpenter [7] follow as special cases for $c=0$.

2. PROPERTIES OF $B_{c}(n)$

Property 1.

(2.1)

$$
\sum_{n=0}^{\infty} B_{c}(n) t^{n} / n!=\exp \left(e^{t}-1-t-\cdots-t^{c} / c!\right)
$$

This is immediately evident upon expansion of the right-hand side making use of (1.7).

Lemma 1.

$$
\begin{equation*}
d_{c}(n+1, k)=\sum_{m=0}^{n-c}\binom{n}{m} d_{c}(m, k-1) . \tag{2.2}
\end{equation*}
$$

Proof. Differentiating both sides of (1.7) with respect to t and expanding in powers of t we obtain

$$
\sum_{r=c}^{\infty} \sum_{m=0}^{\infty}\binom{r+m}{m} d_{c}(m, k-1) t^{r+m} /(r+m)!=\sum_{n=0}^{\infty} d_{c}(n, k) t^{n-1} /(n-1)!
$$

Interchanging sums on the left-hand side and equating coefficients of t^{n} we are led to Lemma 1.

Property 2.

(2.3)

$$
B_{c}(n+1)=\sum_{m=0}^{n-c}\binom{n}{m} B_{c}(m)
$$

This is now immediate from Definition 1 and Lemma 1. We note that when $c=0(2.3)$ reduces to the known relation

$$
B_{n+1}=\sum_{m=0}^{n}\binom{n}{m} B_{m}
$$

for Bell numbers.
In attempting to find a recurrence relation in c for $B_{c}(n)$ we first need
Lemma 2.

$$
\begin{equation*}
d_{c}(n, k)=\sum_{i=0}^{k}\left[(-1)^{i} n!/ i!(c!)^{i}(n-c i)!\right] d_{c-1}(n-c i, k-i), \tag{2.4}
\end{equation*}
$$

for $c \geqslant 1$.
Proof. See Riordan [2], p. 102.
Using Lemma 2 we can now write

$$
B_{c}(n)=\sum_{i=0}^{n}\left[(-1)^{i}\binom{n}{i}(n-i)!/(c!)^{i}(n-c i)!\right] \sum_{k=i}^{n} d_{c-1}(n-c i, k-i)
$$

It follows directly from the above that we now have

Property 3.

$$
\begin{equation*}
B_{c}(n)=\sum_{i=0}^{n}\left[(-1)^{i}\binom{n}{i}(n-i)!/(c!)^{i}(n-c i)!\right] B_{c-1}(n-c i), \quad c \geqslant 1 \tag{2.5}
\end{equation*}
$$

The well-known Dobinski formula for Bell numbers has the form

$$
\begin{equation*}
B_{n+1}=e^{-1}\left(1^{n}+2^{n} / 1!+3^{n} / 2!+\ldots\right) \tag{2.6}
\end{equation*}
$$

When $c=1$ Property 1 gives us a formula similar to that of Dobinski.
Property 4.
(2.7)

$$
B_{1}(n)=e^{-1}\left((-1)^{n} / 1!+1^{n} / 2!+2^{n} / 3!+\cdots\right)
$$

Property 3 suggests that we may write the generalized Bell numbers as a linear combination of the Bell numbers. Write the right-hand side of (2.1) in the form

$$
\begin{equation*}
\exp \left(e^{t}-1-t-t^{2} / 2!-\cdots-t^{c} / c!\right)=\exp \left(e^{t}-1\right) H(t) \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
H(t)=\sum_{r=0}^{\infty} b_{c}(r) t^{r} / r!, \quad c \geqslant 1 \tag{2.9}
\end{equation*}
$$

Property 5.

$$
\begin{equation*}
B_{c}(n)=\sum_{j=0}^{n}\binom{n}{j} b_{c}(j) B_{n-j}, \quad c \geqslant 0 . \tag{2.10}
\end{equation*}
$$

Proof. Expand the right-hand side of (2.8) in powers of t. Property 5 now follows from (2.1), with $c=0$, and (2.9). For the purposes of enumeration the recurrence relation for $b_{c}(r)$,

$$
\begin{equation*}
b_{c}(r+1)=-\sum_{i=0}^{c-1}\binom{r}{i} b_{c}(r-i), \quad c \geqslant 1 \tag{2.11}
\end{equation*}
$$

with $b_{0}(j)=0$ for all $j \geqslant 0$ and $b_{c}(0)=1$, can be obtained by differentiating both sides of (2.8) with respect to t, using (2.9), and equating coefficients. With $b_{1}(j)=(-1)^{j}$ we alternately have Property 4 from Property 5.
Making use of the above properties, the first few values of $B_{c}(n)$ are as follows:
Table 1
Table for $B_{c}(n)$

n	0	1	2	3	4	5	6	7
c								
0	1	1	2	5	15	52	203	877
1	1	0	1	1	4	11	41	162
2	1	0	0	1	1	1	11	36

3. RECURRENCE RELATIONS FOR MOMENTS OF THE GBD

Let X be a random variable having the generalized Bell distribution defined by (1.10). The $r^{\text {th }}$ ordinary moment of X is given by

$$
\begin{equation*}
\mu_{c}\left(x^{r}\right)=\sum_{k=0}^{n} k^{r} d_{c}(n, k) / B_{c}(n) \tag{3.1}
\end{equation*}
$$

Let
(3.2)

$$
B_{c}(n, r)=\sum_{k=0}^{n} k^{r} d_{c}(n, k)
$$

Property 6.
(3:3)

$$
B_{c}(n, r+1)=B_{c}(n+1, r)-\binom{n}{c} \sum_{j=0}^{r}\binom{r}{j} B_{c}(n-c, j)
$$

Proof. Multiply both sides of (1.8) by k^{r} and sum over k. We have for every choice of c

$$
\begin{aligned}
B_{c}(n+1, r) & =B_{c}(n, r+1)+\binom{n}{c} \sum_{k=0}^{n} k^{r} d_{c}(n-c, k-1) \\
& =B_{c}(n, r+1)+\binom{n}{c} \sum_{j=0}^{r}\binom{r}{j} B_{c}(n-c, j)
\end{aligned}
$$

Property 6 follows immediately. When $c=0, B_{0}(n, r)$ becomes $B_{n}^{(r)}$ in [7] with Property 6 replaced by Property 7.

$$
\begin{equation*}
B_{n}^{(r+1)}=B_{n+1}^{(r)}-\sum_{j=0}^{r}\binom{r}{j} B_{n}^{(j)} \tag{3.4}
\end{equation*}
$$

Property 7 is not given however by Uppuluri and Carpenter.
In attempting to $\operatorname{express} B_{c}(n, r)$ as a linear combination of the generalized Bell numbers we are led after expanding (3.3) for the first few values of r to the following:

Property 8.

(3.5)

$$
B_{c}(n, r)=\sum_{i=0}^{r} \sum_{j=0}^{i} a_{i, j}(n, r, c) B_{c}(n+r-i-j c)
$$

where $a_{i, j}(n, r, c)$ satisfies the recurrence relation
(3.6)

$$
\begin{aligned}
a_{i, j}(n, r+1, c)= & a_{i, j}(n+1, r, c) \\
& -\binom{n}{c} \sum_{s=r-i+j}^{r}\binom{r}{s} a_{i+s-r-1, j-1}(n-c, s, c),
\end{aligned}
$$

with $a 0,0(n, r, c)=1$ and $a_{i, j}(n, r, c)=0$ if $i>r, j>i$, or $j=0$ and $i>0$.
The proof consists of substituting (3.5) into (3.3) and equating appropriate coefficients. Comparing (3.5) with (1.5) when $c=0$ we must have
(3.7)

$$
\sum_{j=0}^{i} a_{i, j}(n, r, 0)=\binom{r}{i} c_{i}
$$

independent of n for $i=1,2, \cdots, r$. By starting with (3.6) and summing out j one can show that

$$
\begin{equation*}
c_{k+1}=-\sum_{i=0}^{k}\binom{k}{i} c_{i} \tag{3.8}
\end{equation*}
$$

which agrees with Proposition 3 in [7]. We note also when $c=0$

$$
\begin{equation*}
a_{i, j}(n, r, 0)=(-1)^{j}\binom{r}{i} S(i, j), \tag{3.9}
\end{equation*}
$$

independent of n, as (3.6) is then equivalent to

$$
\begin{equation*}
S(i, j)=\sum_{k=0}^{i-1}\binom{i-1}{k} S(k, j-1) \tag{3.10}
\end{equation*}
$$

a property of Stirling numbers of the second kind.
Now let
(3.11)

$$
W_{c}(n, r)=\sum_{j=0}^{n}(j)_{r} d_{c}(n, j)
$$

Then the factorial moments of the generalized Bell distribution are given by

$$
\begin{equation*}
\nu_{c}\left((x)_{r}\right)=W_{c}(n, r) / B_{c}(n) \tag{3.12}
\end{equation*}
$$

We now seek a recurrence formula for $W_{c}(n, r)$ and investigate the special case $c=0$.
Property 9.
(3.13)

$$
W_{c}(n, r+1)=W_{c}(n+1, r)-r W_{c}(n, r)-\binom{n}{c}\left[W_{c}(n-c, r)+r W_{c}(n-c, r-1)\right]
$$

Proof. From (3.11)

$$
W_{c}(n, r+1)=\sum_{j=0}^{n}(j)_{r+1} d_{c}(n, j)=\sum_{j=0}^{n} j(j)_{r} d_{c}(n, j)-r W_{c}(n, r)
$$

Hence
(3.14)

$$
\sum_{j=0}^{n} j(j)_{r} d_{c}(n, j)=W_{c}(n, r+1)+r W_{c}(n, r)
$$

Using (1.8) we can write, with $c \geqslant 1$,

$$
\begin{aligned}
W_{c}(n, r+1) & =\sum_{j=0}^{n}(j)_{r}\left[d_{c}(n+1, j)-\binom{n}{c} d_{c}(n-c, j-1)\right]-r W_{c}(n, r) \\
& =W_{c}(n+1, r)-r W_{c}(n, r)-\binom{n}{c} \sum_{j=0}^{n-1}(j+1)_{r} d_{c}(n-c, j)
\end{aligned}
$$

Now with (3.14) and the fact that

$$
(j+1)_{r}=j(j)_{r-1}+(j)_{r-1}
$$

we have the desired recurrence relation stated in Property 9 . One can verify directly that when $c=0$ we have Property 10.

$$
\begin{equation*}
W_{0}(n, r+1)=W_{0}(n+1, r)-(r+1) W_{0}(n, r)-r W_{0}(n, r-1), \tag{3.15}
\end{equation*}
$$

so that (3.13) is true for all c.

The $W_{0}(n . r)$ may also be expressed as a linear combination of the Bell numbers. In fact using the same substitution procedure as before for Property 8 one can prove
Property 11.
(3.16)

$$
W_{0}(n, r)=\sum_{i=0}^{r} a(r, i) B_{n+r-i},
$$

where $a(r, i)$ satisfies the recurrence relation
(3.17) $a(r+1, i)=a(r, i)-(r+1) a(r, i-1)-r a(r-1, i-2)$,
with $a(r, 0)=1, a(r, i)=0$ if $i>r$, and $a(r, r)=(-1)^{r}$. A table of the $a(n, k)$ is as follows:
Table 2
Table for $a(n, k)$
(3.18)

n	0	1	2	3	4	5	6
0	1						
1	1	-1					
2	1	-3	1				
3	1	-6	8	-1			
4	1	-10	29	-24	1		
5	1	-15	75	-145	89	-1	
6	1	-21	160	-545	814	-415	1

We note that the $a(n, k)$ are the coefficients of a special case of the Poisson-Charlier polynomials (cf. Szegö [6] , p. 34). Touchard [5] gives formulas for the first seven polynomials corresponding to the coefficients in the table above. The polynomials take the form

$$
\begin{equation*}
h_{n}(x)=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(x)_{n-i} \tag{3.19}
\end{equation*}
$$

If we write

$$
\begin{equation*}
(x)_{n-i}=\sum_{k=0}^{n-i} s(n-i, k) x^{k}, \quad n-i>0 \tag{3.20}
\end{equation*}
$$

where the $s(n, k)$ are the Stirling numbers of the first kind (see Riordan [2] p. 33), then

$$
\begin{equation*}
h_{n}(x)=\sum_{k=0}^{n}\left[\sum_{i=0}^{n-k}(-1)^{i}\binom{n}{i} s(n-i, k)\right] x^{k} . \tag{3.21}
\end{equation*}
$$

Hence $a(n, k)$ has the representation

$$
\begin{equation*}
a(n, k)=\sum_{i=0}^{k}(-1)^{i}\binom{n}{i} s(n-i, n-k) \tag{3.22}
\end{equation*}
$$

Investigating the general case using similar procedures as before one can easily prove
Property 12.

$$
\begin{equation*}
W_{c}(n, r)=\sum_{i=0}^{r} \sum_{j=0}^{i} b_{i, j}(n, r, c) B_{c}(n+r-i-j c) \tag{3.23}
\end{equation*}
$$

where $b_{i, j}(n, r, c)$ satisfies the recurrence relation

$$
b_{i, j}(n, r+1, c)=b_{i, j}(n+1, r, c)-r b_{i-1, j}(n, r, c)
$$

$$
\begin{equation*}
-\binom{n}{c}\left[b_{i-1, j-1}(n-c, r, c)-r b_{i-2, j-1}(n-c, r-1, c)\right], \tag{3.24}
\end{equation*}
$$

with $b_{r, j}(n, r, c)=0$, for $j=0,1, \cdots, r-1, b_{0,0}(n, r, c)=1$, and $b_{r, r}(n, r, c)=(-1)^{r} n!/(c!)^{n}(n-r c)!$.
Comparing (3.16) and (3.23) when $c=0$, we have

$$
\begin{equation*}
a(r, i)=\sum_{j=0}^{i} b_{i, j}(n, r, 0) \tag{3.25}
\end{equation*}
$$

Hence in view of (3.22)

$$
\begin{equation*}
b_{i, j}(n, r, 0)=(-1)^{j}\binom{r}{j} s(r-j, r-i) \tag{3.26}
\end{equation*}
$$

independent of n.
Recurrence relations for the ordinary and factorial moments are readily obtained from (3.3), (3.4), (3.13), and (3.15).

REFERENCES

1. H. Finlayson, "Numbers Generated by $\exp \left(e^{x}-1\right)$," Masters thesis, 1954, University of Alberta, Canada.
2. J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958.
3. G. C. Rota, "The Number of Partitions of a Set," Amer. Math. Monthly, 71 (1964), pp. 498-504.
4. R. F. Tate and R. L. Goen, "Minimum Variance Unbiased Estimation for the Truncated Poisson Distribution," Ann. Math. Statist., 29 (1958), pp. 755-765.
5. J. Touchard, "Nombres Exponentials et Nombres de Bernoulli," Canad. J. Math., 8 (1956), pp. 305-320.
6. G. Szegö, Orthogonal Polynomials, Revised edition, American Mathematical Society, Providence, R.I., 1959.
7. V. R. Uppuluri and J. R. Carpenter, "Numbers Generated by the Function $\exp \left(1-e^{x}\right)$," The Fibonacci Quarterly, Vol. 7, No. 4, (Dec. 1969), pp. 437-448.

为

