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1. 1WTF10DUCTSQW 
In the notation of Riordan [2 ] , the Stirling numbers of the second kind, S(n,k), with argumentsn and /rare de-

fined by the relation 
n 

(1.1) tn = £ S(n,k)Mk, n > 0, 
k=0 

where (t)n = t(t - 1) — (t - n + 1)\% the factorial power function. They have been utilized by Tate and Goen [4] in 
obtaining the distribution of the sum of zero-truncated Poisson random variables where 

oo 

(1.2) (ex- 1)k/k! = YJ Stn,k)tn/n! . 
n=k 

The Bell numbers or exponential numbers Bn can be expressed as 
n 

(1.3) Bn = J 2 S(n>k)< n > °* 
k=0 

with BQ = 1. They have been investigated by many authors: see [1] and [3] for lists of references. Uppuluri and 
Carpenter [7] have recently studied the moment properties of the probability distribution defined by 
(1.4) p(k) = S(n,k)/Bn, k = 1,2, -,n, 

and give 
n r 

(1.5) £ krS(n,k) = E ( /) Wn+r-l . 
k=1 i=1 

where the sequence i Cn,n = 0, 1, ~ > is defined by 
oo 

(1.6) E Ckx
k/k! = exp(1-ex) . 

k=0 

Tate and Goen [4] have also derived the /7-fold convolution of independent random variables having the Poisson 
distribution truncated on the left at Y in terms of the generalized Stirling numbers of the second kind, dc(n,k) given 
by 

oo 

(1.7) fer- 1-t tc/c!)k/k! = 5 3 clc(n,k)tn/n!, 
n=k(c+1) 

where dc(n,k) = 0 for n < k(c + 11 They give an explicit representation for dc(n,k) too complicated to reproduce 
here. The dc(n,k) can be shown to satisfy the recurrence formula 

m 
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(1.8) dc(n + 7, k) = kdc(n,k) + I "c \ dc(n - c, k - 1), 

where dc(0,0)= 7 for all a 

Definition 1, We define the numbers Bc(n) given by 

n 

(1.9) Bc(n) = ] T dc(n,k), 

k=0 

fore > 1 and/7 >0 as generalized Bell numbers. It may be noted that BQM = Bn . 

Definition 2. A random variable X is said to have the generalized Bell distribution (GBD) if its probability func-
tion is given by 
(1.10) pc(k) = dc(n,k)/Bc(n), k = Q,1,...,n. 

It may also be noted that when c = Omdn > 0 (1.10) reduces to (1.4) as then dQ(n,0) = 0. 
In this paper we investigate some properties of the numbers Bc(n) and provide recurrence relations for the ordinary 

and factorial moments of the GBD. It is shown that the related results obtained by Uppuluri and Carpenter [7] 
follow as special cases for c = 0. 

2. PROPERTIES OF Bc(n) 

Property 1. 

(2.1) 2" ] Bc (n)tn/nf = exp (e * - 1 - t tc/c!). 
n=0 

This is immediately evident upon expansion of the right-hand side making use of (1.7). 

Lemma 1. 
n-c 

(2.2) * dc(n + 1,k)=J2 ( M de(m,k-1). 
m=0 

Proof, Differentiating both sides of (1.7) with respect to t and expanding in powers of t we obtain 
oo oo oo 

£ E ( 'IT ) dc(m,k- 1)tr+m/(r + m)! = X ) dc(n,k)tn-1/(n - 1)! . 

r=c m=0 n=0 

Interchanging sums on the left-hand side and equating coefficients of tn we are led to Lemma 1. 
Property 2. 

n-c 

(2.3) Bc(n + 1)= Y, (m) Bc(m) ' 
m=0 

This is now immediate from Definition 1 and Lemma 1. We note that when c = 0 (22) reduces to the known relation 

n 
Bn+1 = I J (m) Bm 

m=0 
for Bell numbers. 

In attempting to find a recurrence relation in c for Bc(n) we first need 
Lemma 2. 

k 

(2.4) dc(n,k) = Y* [(-lynl/iHclfo-ciMdc-tfn-chk-i), 
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for o h 
Proof See Riordan [2 ] , p. 102. 

Using Lemma 2 we can now write 

n n 
Bc(n) = L tf-^' ( ? ) (n-i)!/(c!)}(n-ci)!] £ dc^(n - ci, k- i). 

i=0 k=i 

It follows directly from the above that we now have 
Property 3. 

n 

(2.5) Bc(n) = Y, K-V* (") (n-iWfciy'fn-ciMBc-rfn-cii, 
i=0 

C> 1. 

The well-known Dobinski formula for Bell numbers has the form 

(2.6) BnH = e'1(1n+2n/1! + 3n/2! + -). 

When c= 1 Property 1 gives us a formula similar to that of Dobinski. 

Property 4. 

(2.7) Bj(n) = e"U(-1)n/H+ 1n/2! + 2n/3! + -). 

Property 3 suggests that we may write the generalized Bell numbers as a linear combination of the Bell numbers. 
Write the right-hand side of (2.1) in the form 

(2.8) exp (ef - 1 - t - t2/2! tc/c!) = exp (er - 1)H(t), 
where 

oo 

(2.9) Hit) = J2 bc(r)t
r/r!, c > 1. 

r=0 

Property 6. 

(2.10) 
n 

Bc(n) = Y* [ni)bc(i)Bn-h 
1=0 

c > 0. 

Proof. Expand the right-hand side of (2.8) in powers of t Property 5 now follows from (2.1), with c = 0, and (2.9). 

For the purposes of enumeration the recurrence relation i®xhc(r), 

c-1 

(2.11) bc(r+1) = - Y, ( / ) bc(r-i), c>1, 
i=0 

with b0(j) = 0 for all / > 0 and bc(0) = 1, can be obtained by differentiating both sides of (2.8) with respect to t, 
using (2.9), and equating coefficients. With bx (j) = (- 1)J we alternately have Property 4 from Property 5. 

Making use of the above properties, the first few values of Bc(n) are as follows: 
Table 1 

Table for Bc(n) 

N.^ 
c \ 
0 
1 
2 

0 

1 
1 
1 

1 

1 
0 
0 

2 

2 
1 
0 

3 

5 
1 
1 

4 

15 
4 
1 

5 

52 
11 
1 

6 

203 
41 
11 

7 

877 
162 
36 
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3. RECURRENCE RELATIONS FOR MOMENTS OF THE GBD 

mdom va 
of X is given by 

LetX be a random variable having the generalized Bell distribution defined by (1.10). Therth ordinary moment 

(3.1) nc(x
r) = ] T krdc(n,k)/Bc(n). 

k=0 
Let 

n 

(3.2) Bc(n,r) = ] T krdc(n,k). 

k=0 

Property 6. 
r 

(3.3) Bc(n,r+1) = Bc(n+1,r)~ ( " ) £ . . ( y ) * c f o - * , / A 
j=0 

Proof. Multiply both sides of (1.8) by kr and sum over>. We have for every choice of c 

n 

Bc(n + 1,r) = Bc(n,r+1)+[n\ ] P krdc(n-c,k-1) 

k=o 

r 

= Bc(n,r+V+[nc
}jYl( rj)Bc(n-c,j). 

ro 

Property 6 follows immediately. Whenc = 0, BQ(n,r) becomesB„ in [7]with Property 6 replaced by 
Property 7. 

(3.4) <>!?"-*%,-£ ['A '? • 
i-o 

Property 7 is not given however by Uppuluri and Carpenter. 
In attemptingtoexpress£c (/?,/->/as a linear combination of the generalized Bell numbers we are led after expanding 

(3.3) for the first few values of r to the following: 

Property 8. 
r i 

(3.5) Bc(nj) = J^ YLati(n'r'c)Bc (n + r - i - jc), 
i=0 rO 

where a,j (n,r,c) satisfies the recurrence relation 
aij(n, r + he) = ajjfn + 1, r, c) 

( 3 6 ) - ( c ) t [rs)ei+s-r-i,H<n-c,s,c), 
s=r~i+j 

with aofolnjfc) = 1 and a,j(n,r,c) = 0 if / > r, j > i, or/ = 0 and / > 0. 
The proof consists of substituting (3.5) into (3.3) and equating appropriate coefficients. 
Comparing (3.5) with (1.5) when C = 0\NB must have 

(3.7) £*u(n,r,0) = (r.)Ci. 
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independent of n for / = 12, - , r. By starting with (3.6) and summing out/one can show that 

(3.8) CkH=-£ [ki)Ci 
i=0 

which agrees with Proposition 3 in [7 ] . We note also when c = 0 

(3.9) au(n,r,0) = (-1}'( r.) S(iJ), 

independent of n, as (3.6) is then equivalent to 
/-/ 

(3.10) S(ijt= J2 {''~1) S(k.j-1). 
k=0 

a property of Stirling numbers of the second kind. 
Now let 

n 

(3.11) Wc(n,r) = £ (j)rdc(n,J). 

1=0 

Then the factorial moments of the generalized Bell distribution are given by 

(3.12) vc((x)r) = Wc(n,r)/Bc(nh 

We now seek a recurrence formula for Wc(n,r) and investigate the special case c = 0. 
Property 9. 

(3.13) Wc(n,r+1) = Wc(n + 1, r) - rWc(n,r) - ( "c) [Wc(n - c, r) +rWc(n - c, r- 1)1. 

Proof. From (3.11) 

n n 

Wc(n,r+ V = Y, (J)r+ldc(n,f) = £ j(j)rdc(n,j) - rWc(n,r). 

j=0 l=o 

Hence 
n 

(3.14) Y* I0')rdc(nj) = Wc(n,r+ 1) + rWc(n,r). 

j=0 

Using (1.8) we can write, with c>\, 

n 
wc(n,r+l) = Y (i)r[dc(n+ 1j)~[ n

c)dc(n-cfj- 1)1 - rWc(n,r) 

1=0 

n-1 

= Wc(n +1,r)- rWc(n,r) - l n
c ) j 2 (j + 1)rdc(n - c,j}. 

' I=o 

Now with (3.14) and the fact that 
d+Dr = j(})r-1 + (l)r-1 

we have the desired recurrence relation stated in Property 9. One can verify directly that when c - 0 we have 
Property 10. 

(3.15) Wjn,r+1) = WQ (n + 1, r) - (r+1)Wjn,r) - rWjn, r-1), 

so that (3.13) is true for all c. 

71 
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The Wjn.r) may also be expressed as a linear combination of the Bell numbers. In fact using the same substitution 
procedure as before for Property 8 one can prove 

Property 11. 
r 

(3.16) Wjn,r) = ] T a(r,i)Bn+r-j, 

i=0 

where a(rj) satisfies the recurrence relation 

(3.17) a(r+1,i) = a(r,i)-(r+1)a(r,i- 1)-ra(r- 1,i-2), 

with a(r,0) = 7, a(r,i) = 0 if / > / , and a(rj) = (- 1)r. A table of the a(n,k) is as follows: 

Table 2 
Table for a(n,k) 

(3.18) 

j v * 
I fi^v 

0 
1 
2 
3 
4 
5 
6 

0 

1 
1 

1 

-1 
-3 
-6 

-10 
-15 
-21 

2 

1 
8 

29 
75 

160 

3 

- 1 
-24 

-145 
-545 

4 

1 
89 

814 

5 6 

-1 
-415 1 

We note that the a(n,k) are the coefficients of a special case of the Poisson-Charlier polynomials (cf. Szego [6], p. 
34). Touchard [5] gives formulas for the first seven polynomials corresponding to the coefficients in the table above. 
The polynomials take the form 

hn(x> = x ; (-w (i)(x)^h 
i=0 

(3.19) 

If we write 
n-i 

(3.20) (x)n-i = X ) s(n ~ '<k)xk' n-i > 0, 
k=0 

where the s(n,k) are the Stirling numbers of the first kind, (see Riordan [2] p. 33), then 

(3.21) 

Hence a(n,k) has the representation 

(3.22) 

hn(x) = X 
k=0 

n-k 
£ (-t)''(l)s(n-i,k) 
i=0 

a(n,k) = ]T r - / / ( ; )^ /7- />-k). 

Investigating the general case using similar procedures as before one can easily prove 

Property 12. 

(3.23) Wc(n,r) = X X) bij(n,r,c)Bc(n+r-i-jc), 

i=0 j=0 
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where b;j(n,r,c) satisfies the recurrence relation 

b,j(n, r+1,c) = b; j(n + 1, r, c) - rbH 1 j(n,r,c) 

~ ( c j fci-U-lfo " c' r> c) ~ rbi-2J-l(n -c,r-1, c)], 

with brJ(n,r,c) = 0, for / = 0, 1, »., r- 1, bQt0(n,r,c) = I and bcr(nfrfc) = (- 1)rn!/(c!)n(n - rc)i. 
Comparing (3.16) and (3.23) when c = 0, we have 

/ 
(3.25) a(r,i) = ^bu(n,r,0). 

TO 
Hence in view of (3,22) 

(3.26) hu(n,r,0) = (-1)'[ r. }s(r-j,r-i) 

independent of n. 
Recurrence relations for the ordinary and factorial moments are readily obtained from (3.3), (3.4), (3.13), and (3.15). 
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