A COMBINATORIAL IDENTITY

HAIM HANANI

Technion-Israel Institute of Technology, Haifa

Let $q<p<k$ and v be positive integers, n be a nonnegative integer, $\ell_{0}=1$ and $\left\{\ell_{1}, \ell_{2} \ldots\right\}$ be a sequence of marks. Further let $T_{k, j}$ be the Stirling numbers of the first kind defined as the coefficients of

$$
\begin{equation*}
f(x)=\sum_{j=1}^{k} T_{k, j} x^{j}=x(x-1)(x-2) \cdots(x-k+1) \tag{1}
\end{equation*}
$$

and let
(2)

$$
L(v, p, q)=\sum r_{1} r_{2} \cdots r_{v} l_{d_{1}} \ell_{d_{2}} \cdots \ell_{d_{v}},
$$

where the summation is over all the sequences of integers $r_{1}, r_{2}, \cdots, r_{v}$ satisfying

$$
p=r_{0} \geqslant r_{1} \geqslant r_{2} \geqslant \cdots \geqslant r_{v}=p-q, \quad \text { and } \quad d_{i}=r_{i-1}-r_{i} .
$$

In connection with integration of differential equations of a group, A Ran proved in his thesis [1], using analytical methods, that
(3)

$$
\sum_{j=1}^{k} T_{k, j} L(j+n, p, q) \equiv 0
$$

identically, i.e., that on the left side of (3) the coefficient of every product $\Pi \ell_{i}^{\alpha_{i}}$ equals zero. Here the proof of (3) is given by combinatorial methods. To begin we write (2) in the form

$$
\begin{equation*}
L(v, p, q)=\sum^{*} R\left(v, p, q, a, \pi \ell_{i}^{\alpha_{i}}\right) \prod_{\Gamma 1} \ell_{i}^{\alpha_{i}}, \tag{4}
\end{equation*}
$$

where the summation $\Sigma{ }^{*}$ is over all sequences of nonnegative integers $a_{1}, a_{2}, \cdots, a_{q}$ satisfying $\Sigma i a_{i}=q$, and

$$
\begin{equation*}
a=\sum a_{i} \tag{5}
\end{equation*}
$$

and prove the following

Lemma.

$$
\begin{equation*}
R\left(v, p, q, a, \pi \ell_{i}^{\alpha_{i}}\right)=\sum_{h=0}^{q} c_{h}(p-h)^{v} \tag{6}
\end{equation*}
$$

where the coefficients c_{h} do not depend on v (but may depend on p, q, a and $\pi \ell_{i}^{\alpha_{i}}$) and are such that

$$
\begin{equation*}
\sum_{h=0}^{q} c_{h}(p-h)^{t}=0, \quad t=0,1, \cdots, a-1 \tag{7}
\end{equation*}
$$

Proof. The proof is given by induction on a. For $a=1$ we have

$$
R\left(v, p, q, 1, \ell_{q}\right)=(p-q) \sum_{i=0}^{v-1} p^{i}(p-q)^{v-i-1}=\frac{p-q}{q}\left(p^{v}-(p-q)^{v}\right),
$$

which satisfies both (6) and (7).
Suppose now that (6) and (7) are satisfied for $a=b-1$. It is easily seen that

$$
R\left(v, p, q, b, \pi \ell_{i}^{\alpha_{i}}\right)=\sum_{\eta}(p-\eta) \sum_{\beta=0}^{v-b} p^{\beta} R\left(v-\beta-1, p-\eta q-\eta b-1, \pi \ell_{i}^{\alpha_{i}} / \ell_{\eta}\right)
$$

where η obtains the values of i for which $a_{i} \geqslant 1$. We make use of (6) with $a=b-1$ and in order to stress that the coefficients c_{h} depend on η we write them in the form $c_{\eta, h}$. We have

$$
\begin{aligned}
R\left(v, p, q, b, \pi \ell_{j}^{\alpha_{i}}\right) & =\sum_{\eta}(p-\eta) \sum_{\beta=0}^{v-b} p^{\beta} \sum_{h=\eta}^{q} c_{\eta, h}(p-h)^{v-\beta-1} \\
& =\sum_{\eta}(p-\eta)\left[\sum_{h=\eta}^{q} \frac{c \eta_{\eta} h}{h}\left(p^{v}-(p-h)^{v}\right)-\sum_{\beta=v-b+1}^{v-1} p^{\beta} \sum_{h=\eta}^{q} c_{\eta_{0} h}(p-h)^{v-\beta-1}\right] .
\end{aligned}
$$

By (7) follows that

$$
\sum_{h=\eta}^{q} c_{\eta, h}(p-h)^{v-\beta-1}=0
$$

for every η and for $0 \leqslant v-\beta-1 \leqslant b-2$, i.e., for $v-b+1 \leqslant \beta \leqslant v-1$ and consequently

$$
\begin{equation*}
R\left(v, p, q, b, \pi \ell_{i}^{\alpha_{i}}\right)=\sum_{\eta}(p-\eta) \cdot \sum_{h=\eta}^{q} \frac{c_{\eta, h}}{h}\left(p^{v}-(p-h)^{v}\right) \tag{8}
\end{equation*}
$$

which proves (6) for $a=b$.
To prove (7) let us denote for every η
(9)

$$
D_{\eta}(t)=\sum_{h=\eta}^{q} \frac{c_{\eta, h}}{h}\left(p^{t}-(p-h)^{t}\right)
$$

Evidently $D_{\eta}(0)=0$. For $t \geqslant 1$ we have

$$
D_{\eta}(t)=\sum_{h=\eta}^{q} \frac{c_{\eta, h}}{h} \cdot h \sum_{i=0}^{t-1} p^{i}(p-h)^{t-i-1}=\sum_{i=0}^{t-1} p^{i} \sum_{h=\eta}^{q} c_{\eta, h}(p-h)^{t-i-1}
$$

By (7) with $a=b-1$,

$$
\sum_{h=\eta}^{q} c_{\eta, h}(p-h)^{t-i-1}=0
$$

for $t=1,2, \cdots, b-1$ and $0 \leqslant i \leqslant t-1$ and consequently $D_{\eta}(t)=0$ for $0 \leqslant t \leqslant b-1$. By (6), (8) and (9),

$$
\sum_{h=0}^{q} c_{h}(p-h)^{t}=R\left(t, p, q, b, \pi l_{i}^{\alpha_{i}}\right)=\sum_{\eta}(p-\eta) D_{\eta}(t)=0, \quad t=0,1, \cdots, b-1
$$

which proves (7) with $a=b$.
Theorem.

$$
\sum_{j=1}^{k} T_{k, j} L(j+n, p, q) \equiv 0
$$

Proof. By (4), (6) and (1) we have

$$
\begin{aligned}
\sum_{j=1}^{k} T_{k, j} L(j+n, p, q) & =\sum_{j=1}^{k} T_{k, j} \sum_{-} \prod_{i=1}^{q} \ell_{i}^{\alpha_{i}} \sum_{h=0}^{q} c_{h}(p-h)^{j+n} \\
& =\sum^{*} \prod_{i=1}^{q} e_{i}^{\alpha_{i}} \sum_{h=0}^{q} c_{h}(p-h)^{n} \sum_{j=1}^{k} T_{k, j}(p-h)^{j}=\sum^{*} \prod_{i=1}^{q} \ell_{i}^{\alpha_{j}} \sum_{h=0}^{q} c_{h}(p-h)^{n} f(p-h) .
\end{aligned}
$$

By definition $p-h$ is an integer satisfying $1 \leqslant p-h \leqslant p \leqslant k-1$ and consequently by (1), $f(p-h)=0$ which proves the theorem.

REFERENCE

1. A. Ran, "One Parameter Groups of Formal Power Series,' ${ }^{\prime}$ Duke Math. J., Vol. 38 (1971), pp. 441-459.

* *

[Continued from Page 48.9

Much more recently (1973), Jacobczyk [6] has given new iterative procedures for determining answers to both:
(a) for each $k, 1 \leqslant k \leqslant N$, which will be the $k{ }^{\text {th }}$ place to be cast out?
(b) for each $k, 1 \leqslant k \leqslant N$, when will the $k^{t h}$ place be cast out?
(The "Oberreihen" methods described by Ahrens also provide answers to both questions.)

REFERENCES

1. W. Ahrens, Mathematische Unterhaltungen und Spiele, 2nd ed., Leipzig, 1918, pp. 188-169.
2. C. G. Bachet, Problemes Plaisants et Delectables qui se font par les Nombres, 1612.
3. W.W.R. Ball and H.S.M. Coxeter, Mathematical Recreations and Essays, London, 1939, pp. 32-35.
4. E. Busche, "Euber die Schubert'sche Lösung eines Bachet'schen Problems," Math. Ann., 47 (1896), 105-112.
5. L. Euler, "Observationes circa novum et singulare progressionum genus," Opera Omnia; Series Prima, Opera Mathematica, Volumen Septimum, MCMXXIII, pp. 246-261.
6. F. Jakóbbczyk, "On the generalized Josephus Problem," Glasgow Math. J., 14 (1973), pp. 168-173.
7. Josephus, The Jewish War, III, 387-391. Translated by H. J. Thackeray, Loeb Classical Library, London, 1927. (See also Slavonic version cited in appendix.)
8. H. Schubert, Zwolf Geduldspiele (neue ausgabe), Leipzig 1899, pp. 120-132.
9. P. G. Tait, "On the Generalization of the Josephus Problem," Proc. Roy. Soc. Edin., 22 (1898), pp. 432-435.
