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Let q < p < k and v be positive integers, n be a nonnegative integer, fi0 ~ 7 and \ cl# fi2 •» i be a sequence of 
marks. Further let 7"^/ be the Stirling numbers of the first kind defined as the coefficients of 

k 

(1) fM=JL TkJJ °x(x-1)(x-2t~(x-k+V 
1=1 

and let 
(2) Uv,p, q) =J2 rj2 - / y ^ e ^ . . . ^ , 
where the summation is over all the sequences of integers ru r2, <-, r„ satisfying 

p = rQ > rl > r% > - > r„ « p - q, and * / /« /> . / - r / . 
In connection with integration of differential equations of a group, A Ran proved in his thesis [1] , using analyti-

cal methods, that 
k 

(3) £ TkJL(j + n,p,q) ^0 
M 

identically, i.e., that on the left side of (3) the coefficient of every product Hz? equals zero. 
Here the proof of (3) is given by combinatorial methods. To begin we write (2) in the form 

(4) L(K p, q) =T*R(K P, q, a, ir*?) n *f -

where the summation 2 * is over all sequences of nonnegative integers alta2, •••, aq satisfying S / a / - q, and 

(5) a - 53<V/ 
and prove the following 
Lemma. 

q 

(6) R(v,P, Q, a, IT*"1') - ] T ch(p~h)y , 
h = Q 

where the coefficients Ch do not depend on v (but may depend on p,q,a and 7T%') and are such that 
q 

(7) 53 chfp-h)** 0, f = ft/,».,«-/. 
h=0 

Proof. The proof is given by induction on a. For a = 1 we have 
v-1 

flrV, P, q, h V = (P ' Q> £ P'Vp - fl^" =^q (PV-(P- q)v), 
H> q 
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which satisfies both (6) and (7). 
Suppose now that (6) and (7) are satisfied for a = b- 1. It is easily seen that 

v-b 
R(v, P, Q, b, ntf ) = Y (P-V) Y, pPR(v-p-r.p-Tiq-nb-lTTtf/Qr)), 

where 17 obtains the values of/for which a / > 1. We make use of (6) with a = b- 1 and in order to stress that the co-
efficients Ch depend on 97 we write them in the form crjfh • We have 

v-h : q '• 

T? (3=0 /?=TJ 

h*r\ p=v-b+l h=*r\ n 
By (7) follows that 

Y Cri,h(P-hrM = 0 
h=ri 

for every rj and for 0 < v - j3 - 1 < b— 2, i.e., fori/ - b + 1 < 0 < v - 1 and consequently 

(8) R(v,P,q,b,^i) = YJ(p-r\) . j^^-fp'-fp-f*)") 

which proves (6) for a = b. 
To prove (7) let us denote for every r? 

q 

(9) Dn(t)= Y ^(^-(P-V*)-

Evidently D^(Q) = 0. For t > 1 we have 

OnM = L T ^ S P'to-h)*-'"1 = t>' ' Z ^(p-h)'-''1 • 

By (7) with a = b - 7, 

Y ^(p-h)*-'"1 = 0 
b=V 

for f = 7, £ >~, b - 7 and 0 < / < t - 7 and consequently Z ? ^ ^ 0 for 0 < f < b - 7. By (6), (8) and (9), 
q 

Y ch(p-b){ = R(t,pfqtb,iisi?) = Y (p-V^nM* 0, t = 0, 7,-.,b-1 

which proves (7) with a = b. 
Theorem. 

k 
Y TkJL(j + n,p,q) = 0. 
M 
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Proof By (4), (6) and (1) we have 

A: k q q 

£ TkJL(j + n, p, q) * £ TkJ £ n if £ oh(p - h)i+n 

j=1 j=1 - i=1 h=o 

= Z * n *? E ch(P-h)n £ TkJ(p-h)l*YL n *?'' £ ch(P~h)nf(p-h). 
1=1 h=0 ]*1 i"1 h=o 

By definition/? - /? is an integer satisfying \<p-h <p<k- 1 and consequently by (1), f(p - h) = 0 which 
proves the theorem. 
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Much more recently (1973), Jacobczyk [6] has given new iterative procedures for determining answers to both: 
(a) for each k,./•< k < N, which will be the kth place to be cast out? 
(b) for each k, 1 <k </\f, when will the kth place be cast out? 

(The "Oberreihen" methods described by Ahrens also provide answers to both questions.) 
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