REFERENCES

1. T. E. Stanley, "A Note on the Sequence of Fibonacci Numbers," Math. Mag., 44, No. 1 (1971), pp. 19-22.
2. D. D. Wall, "Fibonacci Series Modulo m," Amer. Math. Monthly, 67 (1960), pp. 525-532.

*

PARITY TRIANGLES OF PASCAL'S TRIANGLE

S. H. L. KUNG

Jacksonville University, Jacksonville, Florida 32211

In the Pascal's triangle of binomial coefficients, $\binom{n}{r}$, let every odd number be represented by an asterisk, "*," and every even number by a cross, " \dagger." Then we discover another diagram which is quite interesting.
Every nine (odd) numbers form a triangle having exactly one (odd) even number in its interior (odd!). Thus we shall designate it as an Odd-triangle.
The even numbers also form triangles whose sizes vary but each of these triangles contains an even number of crosses. This set of triangles is called Even-triangles.
The present diagram ($n=31$) can be easily extended along the outermost apex of Pascal's triangle. Some partial: observations are:
(a) If $n=2^{i}-1$ and $0 \leqslant r \leqslant 2^{i}-1$, then $\binom{n}{r}$ is odd,
(b) If $n=2^{i}$ and $1 \leqslant r \leqslant 2^{i}-1$, then $\binom{n}{r}$ is even,
where i is a nonnegative integer.

