
FIBONACCI SEQUENCES AND MEIViORY MANAGEMENT 

TB G9 LEWIS 
University of Southwestern Louisiana, Lafayette, Louisiana 70501 

B. I SMITH and M. ZB SMITH 
IBM Corporation, General Products Division, San Jose, California 15100 

Fibonacci sequences have been studied from many points of view. We shall be concerned with sequences of integers 
which satisfy difference equations of the form 
(1) £/ - LM + Li-k-i . 

For various values of k, we obtain generalized Fibonacci sequences as studied by Daykin [1] and Hoggatt [4 ] , 
In [4 ] , many interesting properties of these sequences are derived by using generating functions and generalized 

diagonals of Pascal's Triangle. For our purposes, however, we need a formula which allows the direct calculation of 
any particular term in any one of the sequences determined by (1). The techniques are standard (see Miles [6] or 
Flores [2]) but will be developed here for completeness. 

The advantages of closed-form formulas are important to many applications of Fibonacci sequences. In particular, 
the solution of (1) is useful to computer scientists in their study of algorithms. The polyphase sort algorithm, for in-
stance, requires the use of Fibonacci numbers, and Fibonacci numbers arise naturally in the analysis of the algorithm 
to compute the greatest common divisor of two numbers. The application we investigate concerns the way Fibonacci 
numbers can be used to manage computer memory. 

Consider the objective of keeping as many jobs in memory as possible. To implement this, the system must keep 
extensive tables of areas in memory and the size of each area. As jobs finish, the memory area becomes checker-
boarded with vacant blocks of various sizes. Sometimes a new job is a little too big to fit in any of these areas, even 
though the total available area is sufficient to accomodate several new jobs. This checkerboarding is referred to as 
external fragmentation of memory. It can be alleviated by rearranging the jobs in memory so that all the vacant space 
is in one place. However, such operations require computer resources which could otherwise be used for user jobs in 
memory. 

Some systems arbitrarily divide memory into blocks of fixed size, and force the requests for memory space to con-
form to these constraints. This makes it more economical for the system to manage the available blocks and their 
locations. On the other hand, this can be extravagant use of memory, because requests for space seldom fill the blocks 
to which they are assigned. The unused memory area toward the end of these blocks is called internal fragmentation. 

in fact, there are memory management schemes which incorporate some of these features [7 ] . One such system is 
the Buddy System [5] and works as follows. The total memory sizem is a power of 2, say m~2n. when the system 
notes a request for storage space, it tries to find the smallest block still a power of 2, which will hold the request. 
Larger blocks may be split in half if available, creating two smaller blocks, either of which might hold the request 
with less wasted space (internal fragmentation). 

One feature of this system which reduces system overhead results from the fact that each block size (there are n 
distinct sizes) is twice the size of the next smaller block. That is the block sizes £/ satisfy the relation £/ = 2£./-y. If 
it happens that two adjacent blocks of size £/_/ become free, they are recombined into one block of size £;. This 
makes the tables and search procedures somewhat simpler. 

Others ( [3 ] , [5]) have noticed that the Buddy System enuatsort is a special case of the more general difference 
equation: 
(1) £/ = LM + LHC-U k » Q, 1,2,-.. 
For k = 0 (and appropriate initial values) we get the sequence 1, 2,4, 8,16,— . ForAr^ /, we can obtain the Fibonacci 

37 



38 FIBONACCI SEQUENCES AND MEMORY MANAGEMENT [FEB. 

sequence 1, 1, 2, 3, 5, 6f 13f — . For other values of k we will refer to the corresponding sequences as the kth Fib-
onacci sequence (see Table 1). 

Table 1 
Generalized Fibonacci Sequences Giving Block Sizes 1 Through 250 (approx.) 

/ 
Level 

1 
2 
3 
4 
5 
6 
7 
8 
e 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

k = 0 

1 
2 
4 
8 
16 
32 
64 
128 
256 

k=1 

1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 

Li 
k = 2 

1 
1 
1 
2 
3 
4 
6 
9 
13 
19 
28 
41 
60 
88 
129 
189 
277 

k = 3 

1 
1 
1 
1 
2 
3 
4 
5 
7 
10 
14 
19 
26 
36 
50 
69 
95 
131 
181 
250 

k = 4 

2 
3 
4 
5 
6 
8 
11 
15 
20 
26 
34 
45 
60 
80 
106 
140 
185 
245 

We can design a memory management scheme based on the kth Fibonacci sequence, modeled after the Buddy Sys-
tem. Initially, memory is the size of an appropriate Fibonacci number, and requests for smaller pieces of memory 
are serviced by using Eq. (1) to split and reassemble blocks. The question is, does this improve utilization of mem-
ory? Table 1 shows there is a greater variety of block sizes as k increases. We conjecture that internal fragmentation 
decreases as k increases, but that system overhead increases. 

For the moment we will disregard the overhead and examine the cost due to internal fragmentation. Let < L,l %Q 

be the collection of block sizes, with LQ= O and Ln = m the memory size. If the system services a request for a cer-
tain number* of memory locations, it will allocate a block of size £/, where £/- / <x < /./. The waste involved is 
.Ui-Xji 

The requests for memory space are always for an integral number of locations, but for convenience let us assume 
that the request sizes are given by a continuous probability function pdf(x). Then the expected average waste per re-
quest w is given by Hirschberg in [3] : 

Li 

w =Ys J (Li-x)pdf(x)dx. 

i=1 Lj-f 

Rewriting this, we obtain 

(2) w = m -x - £ (di)cdf(Lt-i), 



1976] FIBONACCI SEQUENCES AND MEMORY MANAGEMENT 39 

where: 
m = maximum memory size 

m 

x = I xpdf(x) = avg. request size 
o 

n = number of distinct block sizes 
di = Li-Lh1 

cdf(z) = f pdf(z)dx = cumulative distribution function. 

The objective of memory management is to minimize w for a given pdf(x). If we restrict our attention to Fibonacci 
type systems, we can gain some additional insight into minimizina w. 

Equation 1 gives rise to the characteristic p o l y n o m i a l , * * * ' - * - 1 = 0, of Xnekth Fibonacci sequence. The poly-
nomial (for fixed k) is known to have (k + 1) distinct roots which yield a closed-form expression forthe/7f/? Fibon-
acci number. Note that f(x) =xkH - xk - 1 has a real root between 1 and 2, since f(1) is negative and f(2) fs pusi-
tive. By Descartes' rule of signs, this is the only positive root, which will be denoted by ax. Thus, 1 < ax < 1 {ax = 2 
for k == 0). Let the other roots of f(x) be a2,a3, ••«, a^^./. It is easy to establish that ax is the root of largest modu-
lus and, in fact, \a,-\ < 1 for / = 2,3, - , Ar + 1. (See, for example, [8].) 

Evidently, any sequence of numbers 1 u,-\ satisfying 

Uj = £ia't + C2CL2*""*ck+lQ>k+l 

will be a kth Fibonacci sequence satisfying Eq. (1). Specifying the initial (k+ 1) terms of the sequence determines 

the constants £ / , —, c^+f, or specifying the constants determines the sequence. For the particular sequence \ L,- \ 
in Table 1, we can write 

Li = £7(17 + - + Ck+ia'k+1. 

Since |a/ | < 1 fo r /= 2, 3, —, k+ 1, it follows that for sufficiently large /̂  

Lj & Cja'j . 

Some approximate values of cx and at are given in Table 2. The initial segments in Table 1 can be obtained from the 
formula Lj = c1a'1 (rounded to the nearest integer). 

Table 2 
Generators for Fibonacci Sequences 

k=0 k=1 k=2 k=3 k=4 

c(k) 1 .44721 .41724 .39663 .38119 
a(k) 2 1.61803 1.46557 1.38028 1.32472 

Consider now the value of ax for different values of k. Let this root be denoted by a(k). We have observed that 
1 < a(k) < 2. From Eq. (1) we see that 

and it follows that a(k + 1) < a(k) for every k. In fact, Ism a(k) ~ / 
k - > • « * 

Let us apply the preceding observations to a particular example, in which the distribution of request sizes is given 
by the uniform distribution pdf(x) = (1/m). Then cdf(x) - (x/m), and x = (m/2). Let k be arbitrary but fixed. We 
write a(k) = a and c(k) - c, so that £/ = caK and Ln - can - m. Then 



40 FIBONACCI SEQUENCES AND MEMORY MANAGEMENT [FEB. 

n 11 

(3) w = m - x- £ (dikdfai.1) = /» - J - c (7 - £ ) £ oWm^ ^ 
/=/ /=l 

f-«('-:)?:«' 
Sf we assume that/w » 1, then 

a2m2 - 1 ~ a2m\ and w - ? - - ^ . 

Thus, w can he made as $m$!! as desired by increasing k, since a approaches 1 as k increases. 
Intuitively, this is to be expected, since for any finite memory size/w, if k >m, then the kth Fibonacci sequence 

contains all the integers from 1 through m, and wshould be zero. However, this leads to extreme overhead in mem-
ory management and places unreasonable demands on the search mechanism for allocation and release of area in 
memory. 

The waste function w measures only the cost of internal fragmentation. Let us assume that the overhead associated 
with a memory system is given by a function of /7, the number of distinct block sizes. Then a more complete cost 
function is 

n 

w = r n - x " - ] n (dj)cdf(Lh1) + f(n). 

HI 

This raises the possibility of optimizing the collection j L/f %Q by considering the equations 

M- = 0 for / = 1,2,»<,n-1 

and the boundary conditions Lo = 0, Ln = m. The solution is given by 

(A) t . cdf(Lj)-cdf(LH) 

Continuing with the simple example of the uniform request distribution, let us assume conveniently that f(n) = fi-n, 
where (3 > 0 is a constant. We obtain 

Lj+f = Lj+ ——j— = 2Lj- Lj-i . 

m 

The difference equation is not of the Fibonacci type, but does have a closed form solution 

So it is possible to optimize the collection \ L/f, which minimizes w, provided we know the nature of f(n) in Eq. 
(4). 

Unfortunately, other request distributions and other functions f(n) do not lead to such nice solutions. Indeed the 
difference equations resulting from (4) are, in general, extremely difficult to solve analytically. For certain pdf(x)'$, 
however, solutions are of considerable importance to computer systems designers, and where closed-form solutions 
of the difference equations are not feasible, it is still important to apply numerical techniques to these problems. 

REFERENCES 
1. D. E. Daykin, "Representation of Natural Numbers as Sums of Generalized Fibonacci Numbers," Journal London 

Math. Soc, 35 (1960), pp. 143-160. 



1976] FIBONACCI SEQUENCES AND MEMORY MANAGEMENT 41 

2. I. Flores, "Direct Calculation nik Generalized Fibonacci Numbers/' The Fibonacci Quarterly, Vol. 5, No. 3 (Apr. 
19671pp. 259-266. 

3. D.S. Hirschberg, "A Class of Dynamic Memory Allocation Systems," Comm. ACM, 16, 19 (Oct 1973), pp. 615-
618. 

4. V. IE. Hoggatt, Jr., "A New Angle on Pascal's Triangle," The Fibonacci Quarterly, Vol. 6, No. 4 (Dec. 1968), pp. 
221-234. 

5. D. E. Knuth, The Art of Computer Programming, Vol. I (2nd Ed.), Addison-Wesley, Reading, Mass., 1973, pp. 
78-96, 435-455. 

6. E. P. Miles, "Generalized Fibonacci Numbers and Associated Matrices," Amer. Math. Monthly, 67 (1967), pp. 
745-757. 

7. J. Minker,etal., "Analysis of Data Processing System," Tech. Rept. 69-99, University of Maryland, College 
Park, Md., 1969. 

8. B. T. Smith, "Error Bounds for Zeros of a Polynomial Based on Gerschgorin's Theorem," J. ACM, 17, 4 (Oct. 
1970), pp. 661-674. 

*kk*tktekk 

[Continued from Page 29.] 

> 35 > 33 
89 + 11 = 100 >21 89-11 = 78 > 21 

> 56 > 14 
144 + 1 2 = 1 5 6 >34 1 4 4 - 1 2 = 1 3 2 > 

> 90 > 88 
233 + 13 = 246 > 55 233 - 13 = 220 > 55 

>145 >143 
377 + 14 = 391 377-14 = 363 
etc., etc., etc. etc., etc., etc. 

Now try it with the Lucas series 1, 3, 4, 7, 11 ,—. 
N.B-(ln the reverse Fibonacci sequence, Fn is negative for even n). 

itkkkkkk 


