ON CONGRUENCE MODULO A POWER OF A PRIME

M. G. MONZINGO

Southern Methodist University, Dallas, Texas 75275

A problem which appears in many textbooks in number theory, e.g. [1], is the following:
If $a^{p} \equiv b^{p}(\bmod p)$, then $a^{p} \equiv b^{p}\left(\bmod p^{2}\right)$.
In this paper this result will be generalized to higher powers of the prime p. Also, there will be a generalization to a composite modulus.
Lemma 1. If n is a positive integer for which $a^{p^{n}} \equiv b^{p^{n}}(\bmod p)$, then $a \equiv b(\bmod p)$.
 that $a \equiv b(\bmod p)$. If $a^{p^{k+1}} \equiv b^{p^{k+1}}(\bmod p)$, then $\left(a p^{k}\right)^{p} \equiv\left(b p^{k}\right)^{p}(\bmod p)$. Hence,

$$
{ }_{a} p^{k} \equiv\left(a p^{k}\right)^{p} \equiv\left(b p^{k}\right)^{p} \equiv b p^{k}(\bmod p)
$$

by Fermat's Theorem. By the induction hypothesis, $a \equiv b(\bmod p)$.
Lemma 2. If $a p^{n} \equiv b p^{n}\left(\bmod p^{n}\right)$, then

$$
p^{n} \mid\left(a^{p^{n-1}}+a^{p^{n-2}} b+\cdots+b^{p^{n-1}}\right) .
$$

Proof. By Lemma 1, $p \mid(a-b)$, and, thus, $a=b+t p$ for some integer t. Then, with $d=p^{n}$,

$$
\begin{gathered}
a=b+(t p) \\
a^{2}=b^{2}+2 b(t p)+(t p)^{2} \\
a^{3}=b^{3}+\cdots+(t p)^{3} \\
\vdots \\
a^{d-1}=b^{d-1}+(d-1) b^{d-2}(t p)+\cdots+(t p)^{d-1} .
\end{gathered}
$$

By multiplying the $i^{\text {th }}$ row by b^{d-i-1}, we obtain:

$$
\begin{gathered}
b^{d-1}=b^{d-1} \\
a b^{d-2}=b^{d-1}+b^{d-2}(t p) \\
a^{2} b^{d-3}=b^{d-1}+2 b^{d-2}(t p)+b^{d-3}(t p)^{2} \\
\vdots \\
\vdots \\
a^{d-2} b=b^{d-1}+(d-2) b^{d-2}(t p)+\cdots+b(t p)^{d-2} \\
a^{d-1}=b^{d-1} \dot{(d-1) b^{d-2}(t p)+\cdots+(t p)^{d-1} .} .
\end{gathered}
$$

The coefficient of $b^{d-k}(t p)^{k-1}$ in the expansion $a^{d-1}+a^{d-2} b+\cdots+b^{d-1}$ is

$$
\sum_{i=k-1}^{d-1}\binom{i}{k-1}
$$

Using the identity

$$
\binom{b+1}{a}=\binom{b}{a}+\binom{b}{a-1},
$$

rewritten as

$$
\binom{b}{a-1}=\binom{b+1}{a}-\binom{b}{a} .
$$

we have

$$
\begin{aligned}
\sum_{i=k-1}^{d-1}\binom{i}{k-1} & =\sum_{i=k-1}^{d-1}\binom{i+1}{k}-\sum_{i=k-1}^{d-1}\binom{i}{k}=\binom{d}{k}+\sum_{i=k-1}^{d-2}\binom{i+1}{k}-\sum_{i=k}^{d-1}\binom{i}{k}-\binom{k-1}{k} \\
& =\binom{d}{k}+\sum_{i=k}^{d-1}\binom{i}{k}-\sum_{i=k}^{d-1}\binom{i}{k}-0=\binom{d}{k}
\end{aligned}
$$

This implies that the $k^{t h}$ term of $a^{d-1}+\cdots+b^{d-1}$ expressed as a polynomial in $(t p)$ is $(d r / k) b^{d-k}(t p)^{k-1}$, where

$$
r=\binom{d-1}{k-1}
$$

If $(p, k)=1$, then

$$
p^{n} \mid(d r / k) b^{d-k}(t p)^{k-1}
$$

since $p^{n} \mid d$. Suppose that $(p, k) \neq 1$; then, $k=p^{m} g$, where $m \neq 0$ and $p \nmid g$. To show that $m \leqslant k-1$, suppose to the contrary that $m>k-1$, i.e., $m \geqslant k$. Since $p>1, p^{m}>m$. Hence, $p^{m}>m \geqslant k$, a contradiction. Thus, $m<k-1$, and

$$
(d r / k) b^{d-k}(t p)^{k-1}=(d r / g) b^{d-k} t^{k-1} p^{k-m-1}
$$

where p^{k-m-1} is integral. Since $p \nmid g$,

$$
p^{n} \mid(d r / g) b^{d-k} t^{k-1} p^{k-m-1}
$$

Therefore, p^{n} divides each term of $a^{d-1}+\ldots+b^{d-1}$ expressed as a polynomial in ($t p$). The conclusion follows.
The next lemma is a generalization of the problem mentioned at the beginning of this paper.
Lemma 3. If $a^{p^{n}} \equiv b p^{n}\left(\bmod p^{n}\right)$, then $a^{p^{n}} \equiv b p^{n}\left(\bmod p^{n+1}\right)$.
Proof. Let $d=p^{n}$; then, by Lemma $1, p \mid(a-b)$, and by Lemma $2, p^{n} \mid\left(a^{d-1}+\ldots+b^{d-1}\right)$. This implies that

$$
p^{n+1} \mid(a-b)\left(a^{d-1}+\cdots+b^{d-1}\right)
$$

i.e., $p^{n+1} \mid\left(a p^{n}-b p^{n}\right)$.

Theorem. If $a^{m} \equiv b^{m}(\bmod m)$, then $a^{m} \equiv b^{m}\left(\bmod m \cdot p_{1} p_{2} \cdots p_{r}\right)$, where $p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{r}^{n_{r}}$ is the canonical factorization of m.
Proof. Let $q=m / p_{i}^{n_{i}}$; then

$$
\left(a^{q}\right)^{p_{i}^{n_{i}}} \equiv a^{m} \equiv b^{m} \equiv\left(b^{q}\right)^{p_{i}^{n_{i}}}\left(\bmod p_{i}^{n_{i}}\right)
$$

By Lemma $3, a^{m} \equiv b^{m}\left(\bmod p_{i}^{n_{i}^{+1}}\right)$. The conclusion follows since the p_{i} are relatively prime.
The following example shows that in general the modulus in Lemma 3 and in the Theorem cannot be increased any more.
Example: $7^{9} \equiv 1^{9}(\bmod 9)$ implies that $7^{9} \equiv 1^{9}(\bmod 27)$, but $7^{9} \not \equiv 1^{9}(\bmod 81)$.
REFERENCE

1. I.Niven and H. Zuckerman, An Introduction to the Theory of Numbers, Wiley, New York, 1960.
