ON CONGRUENCE MODULO A POWER OF A PRIME

M. G. MONZINGO

Southern Methodist University, Dallas, Texas 75275

A problem which appears in many textbooks in number theory, e.g. [1], is the following: If $a^{\rho} \equiv b^{\rho} \pmod{\rho}$, then $a^{\rho} \equiv b^{\rho} \pmod{\rho^2}$.

In this paper this result will be generalized to higher powers of the prime p. Also, there will be a generalization to a composite modulus.

Lemma 1. If n is a positive integer for which $a^{p^n} \equiv b^{p^n} \pmod{p}$, then $a \equiv b \pmod{p}$.

Proof. Let n = 1; then, $a \equiv a^p \equiv b^p \equiv b \pmod{p}$ by Fermat's Theorem. Suppose that $a^{p^k} \equiv b^{p^k} \pmod{p}$ implies that $a \equiv b \pmod{p}$. If $a^{p^{k+1}} \equiv b^{p^{k+1}} \pmod{p}$, then $(a^{p^k})^p \equiv (b^{p^k})^p \pmod{p}$. Hence,

$$ap^{k} \equiv (ap^{k})^{p} \equiv (bp^{k})^{p} \equiv bp^{k} \pmod{p}$$

by Fermat's Theorem. By the induction hypothesis, $a \equiv b \pmod{p}$.

Lemma 2. If $a^{p^n} \equiv b^{p^n} \pmod{p^n}$, then

$$p^{n} \mid (a^{p^{n-1}} + a^{p^{n-2}}b + \dots + b^{p^{n-1}}).$$

. . .

Proof. By Lemma 1, p|(a - b), and, thus, a = b + tp for some integer t. Then, with $d = p^n$,

$$a = b + (tp)$$

$$a^{2} = b^{2} + 2b(tp) + (tp)^{2}$$

$$a^{3} = b^{3} + \dots + (tp)^{3}$$

$$\vdots \qquad \vdots$$

$$d^{-1} = b^{d-1} + (d-1)b^{d-2}(tp) + \dots + (tp)^{d-1}$$

By multiplying the i^{th} row by b^{d-i-1} , we obtain:

$$b^{d-2} = b^{d-1}$$
$$ab^{d-2} = b^{d-1} + b^{d-2}(tp)$$
$$a^{2}b^{d-3} = b^{d-1} + 2b^{d-2}(tp) + b^{d-3}(tp)^{2}$$

$$a^{d-2}b = b^{d-1} + (d-2)b^{d-2}(tp) + \dots + b(tp)^{d-2}$$
$$a^{d-1} = b^{d-1} + (d-1)b^{d-2}(tp) + \dots + (tp)^{d-1}$$

The coefficient of $b^{d-k}(tp)^{k-1}$ in the expansion $a^{d-1} + a^{d-2}b + \dots + b^{d-1}$ is

$$\sum_{j=k-1}^{d-1} \left(\begin{smallmatrix} i \\ k-1 \end{smallmatrix} \right) \; .$$

Using the identity

$$\begin{pmatrix} b+1\\ a \end{pmatrix} = \begin{pmatrix} b\\ a \end{pmatrix} + \begin{pmatrix} b\\ a-1 \end{pmatrix},$$

rewritten as

$$\begin{pmatrix} b \\ a-1 \end{pmatrix} = \begin{pmatrix} b+1 \\ a \end{pmatrix} - \begin{pmatrix} b \\ a \end{pmatrix},$$

we have

$$\sum_{i=k-1}^{d-1} \binom{i}{k-1} = \sum_{i=k-1}^{d-1} \binom{i+1}{k} - \sum_{i=k-1}^{d-1} \binom{i}{k} = \binom{d}{k} + \sum_{i=k-1}^{d-2} \binom{i+1}{k} - \sum_{i=k}^{d-1} \binom{i}{k} - \binom{k-1}{k} = \binom{d}{k} + \sum_{i=k-1}^{d-1} \binom{i}{k} - \binom{i}{k} - \binom{k-1}{k} = \binom{d}{k} + \sum_{i=k-1}^{d-1} \binom{i}{k} - \binom{i}{k} - \binom{d}{k} - \binom{d}{k} = \binom{d}{k} + \sum_{i=k-1}^{d-1} \binom{i}{k} - \binom{d}{k} - \binom{d}{k} = \binom{d}{k} + \sum_{i=k-1}^{d-1} \binom{i}{k} - \binom{d}{k} - \binom{d}{k} - \binom{d}{k} - \binom{d}{k} - \binom{d}{k} = \binom{d}{k} - \binom{$$

This implies that the k^{th} term of $a^{d-1} + \dots + b^{d-1}$ expressed as a polynomial in (tp) is $(dr/k)b^{d-k}(tp)^{k-1}$, where

$$r = \left(\begin{array}{c} d-1 \\ k-1 \end{array} \right) \, .$$

If *(p,k) = 1,* then

$$p^n \left(\frac{dr}{k} \right) b^{d-k} \left(\frac{tp}{k-1} \right)^{k-1}$$

since $p^n \mid d$. Suppose that $(p,k) \neq 1$; then, $k = p^m g$, where $m \neq 0$ and $p \nmid g$. To show that $m \leq k - 1$, suppose to the contrary that m > k - 1, i.e., $m \geq k$. Since p > 1, $p^m > m$. Hence, $p^m > m \geq k$, a contradiction. Thus, m < k - 1, and

$$(dr/k)b^{d-k}(tp)^{k-1} = (dr/g)b^{d-k}t^{k-1}p^{k-m-1}$$

 $p^{n} \mid (dr/g) b^{d-k} t^{k-1} p^{k-m-1}$.

where p^{k-m-1} is integral. Since $p \nmid g$,

Therefore, p^n divides each term of $a^{d-1} + \dots + b^{d-1}$ expressed as a polynomial in *(tp)*. The conclusion follows. The next lemma is a generalization of the problem mentioned at the beginning of this paper.

Lemma 3. If $a^{p^n} \equiv b^{p^n} \pmod{p^n}$, then $a^{p^n} \equiv b^{p^n} \pmod{p^{n+1}}$.

Proof. Let $d = p^n$; then, by Lemma 1, $p \mid (a - b)$, and by Lemma 2, $p^n \mid (a^{d-1} + \dots + b^{d-1})$. This implies that $p^{n+1} \mid (a - b)(a^{d-1} + \dots + b^{d-1})$.

i.e., $p^{n+1} | (ap^n - bp^n)$.

Theorem. If $a^m \equiv b^m \pmod{m}$, then $a^m \equiv b^m \pmod{m \cdot p_1 p_2 \cdots p_r}$, where $p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$ is the canonical factorization of m.

Proof. Let $q = m/p_i^{n_i}$; then

$$(a^{q})^{p_{i}^{n_{i}}} \equiv a^{m} \equiv b^{m} \equiv (b^{q})^{p_{i}^{n_{i}}} \pmod{p_{i}^{n_{i}}}.$$

By Lemma 3, $a^m \equiv b^m \pmod{p_i^{n+1}}$. The conclusion follows since the p_i are relatively prime.

The following example shows that in general the modulus in Lemma 3 and in the Theorem cannot be increased any more.

Example: $7^9 \equiv 1^9 \pmod{9}$ implies that $7^9 \equiv 1^9 \pmod{27}$, but $7^9 \not\equiv 1^9 \pmod{81}$.

REFERENCE

1. I.Niven and H. Zuckerman, An Introduction to the Theory of Numbers, Wiley, New York, 1960.
