COLUMN GENERATORS FOR COEFFICIENTS OF FIBONACCI AND FIBONACCI-RELATED POLYNOMIALS

DEAN B. PRIEST and STEPHEN W. SMITH
Harding College, Searcy, Arkansas 72143

1. INTRODUCTION

Generating functions, row sums and rising diagonal sums for the Pascal triangle and types of Pascal triangles have been studied in [2] and [4]. Bicknell has pointed out in [1] that another Pascal-like array is observed if we consider the coefficients of the Fibonacci polynomials $F_{n}(t)$. These polynomials are such that

$$
F_{0}(t)=0, \quad F_{1}(t)=1, \quad \text { and } \quad F_{n}(t)=t F_{n-1}(t)+F_{n-2}(t)
$$

for $n \geqslant 2$. The array is as follows:
Array 1

	t^{0}	t^{1}	t^{2}	t^{3}	t^{4}	t^{5}	t^{6}	t^{7}	t^{8}
0	0								
1	1								
2	0	1							
3	1	0	1						
4	0	2	0	1					
5	1	0	3	0	1				
6	0	3	0	4	0	1			
7	1	0	6	0	5	0	1		
8	0	4	0	10	0	6	0	1	
9	1	0	10	0	15	0	7	0	1
	$\frac{x}{1-x^{2}}$	$\frac{x^{2}}{\left(1-x^{2}\right)^{2}}$	$\frac{x^{3}}{\left(1-x^{2}\right)^{3}}$	$\frac{x^{4}}{\left(1-x^{2}\right)^{4}}$		Column Generators			
$0^{\text {th }}$	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$		Column				

Since the generating function for the zero ${ }^{\text {th }}$ column is $f(x)=x /\left(1-x^{2}\right)$ and since each nonzero $a_{i j}$ has the Pascallike property

$$
a_{i j}=\sum_{k=0}^{i-1} a_{k, j-1}
$$

for all i and j such that $i>j \geqslant 1$, then techniques similar to those in Theorem 1 of [4] can be used to show that the generating function for the $k^{\text {th }}$ column $(k=0,1,2, \ldots)$ is

$$
g_{k}(x)=f(x)\left[x /\left(1-x^{2}\right)\right]^{k} .
$$

Moreover, the generating function for the row sums of this array is

$$
G(x)=\sum_{k=0}^{\infty} g_{k}(x)=f(x) \sum_{k=0}^{\infty}\left(\frac{x}{1-x^{2}}\right)^{k}=f(x) \frac{1-x^{2}}{1-x-x^{2}}=\frac{x}{1-x-x^{2}}=\sum_{n=0}^{\infty} F_{n} x^{n}
$$

as was to be expected. Again, employing results essentially the same as those in [2] and [4] , the generating function for the rising diagonals of this array is

$$
D(x)=\sum_{k=0}^{\infty} x^{k} g_{k}(x)=f(x) \sum_{k=0}^{\infty}\left(\frac{x^{2}}{1-x^{2}}\right)^{k}=\left(\frac{x}{1-x^{2}}\right)\left(\frac{1-x^{2}}{1-2 x^{2}}\right)=\frac{x}{1-2 x^{2}}=\sum_{n=0}^{\infty} 2^{n} x^{2 n+1}
$$

2. GENERATING FUNCTIONS FOR COEFFICIENTS OF $F_{n}^{\prime}(t)$

Now we consider the array for $F_{n}^{\prime}(t)$, the first derivative of each Fibonacci polynomial. It will be noted that this array is quite similar to the array suggested by Hoggatt in problem $\mathrm{H}-131$ of this Quarterly [5]. In that problem it is required to show that sums, C_{n}, of the rising diagonals are given by $C_{1}=0$ and

$$
c_{n+1}=\sum_{j=0}^{n} F_{n-j} F_{j}
$$

If we appropriately relabel the columns in that array, this is the same as showing

$$
c_{n}=\sum_{j=0}^{n} F_{n-j} F_{j}
$$

for $n=0,1,2, \cdots$. Since the rising diagonal sums of that array are the same as the row sums of the array for the $F_{n}^{\prime}(t)$ and since we can find the column generators for the array below, we can employ techniques similar to those used in the previous section to answer problem $\mathrm{H}-131$. For consider:

Array 2

n	t^{0}	t^{1}	t^{2}	t^{3}	t^{4}	t^{5}	t^{6}	t^{7}
0	0							
1	0							
2	1							
3	0	2						
4	2	0	3					
5	0	6	0	4				
6	3	0	12	0	5			
7	0	12	0	20	0	6		
8	4	0	30	0	30	0	7	
9	0	20	0	30	0	42	0	8

$$
\begin{array}{ccccl}
\frac{x^{2}}{\left(1-x^{2}\right)^{2}} & \frac{2 x^{3}}{\left(1-x^{2}\right)^{3}} & \frac{3 x^{4}}{\left(1-x^{2}\right)^{4}} & \frac{4 x^{5}}{\left(1-x^{2}\right)^{5}} & \text { Column Generators } \\
0^{\text {th }} & 1^{\text {st }} & 2^{\text {nd }} & 3^{\text {rd }} & \text { Column }
\end{array}
$$

Denoting the generator of the zero ${ }^{\text {th }}$ column as $p(x)$, the column generator for the $k^{\text {th }}$ column is given by

$$
d_{k}(x)=p(x)(k+1)\left(\frac{x}{1-x^{2}}\right)^{k}
$$

for $k=0,1,2, \cdots$. The generating function for the row sums is given by

$$
\begin{aligned}
G(x) & =\sum_{k=0}^{\infty} d_{k}(x)=p(x) \sum_{k=0}^{\infty}(k+1)\left(\frac{x}{1-x^{2}}\right)^{k}=p(x) \frac{1}{\left[1-\frac{x}{1-x^{2}}\right]^{2}} \\
& =\frac{x^{2}}{\left(1-x^{2}\right)} \cdot \frac{\left(1-x^{2}\right)^{2}}{\left(1-x-x^{2}\right)^{2}}=\left(\frac{x}{1-x-x^{2}}\right)^{2} \\
& =\sum_{n=0}^{\infty} F_{n}(x) \cdot \sum_{n=0}^{\infty} F_{n}(x)=\sum_{n=0}^{\infty}\left(\sum_{j=0}^{n} F_{n-j} F_{j}\right) x^{n} .
\end{aligned}
$$

Since we have relabeled the zero ${ }^{\text {th }}$ column, we have immediately that

$$
c_{n}=\sum_{j=0}^{n} F_{n-j} F_{j}=F_{n}^{(1)}
$$

for $n=0,1,2, \cdots$, where $F_{n}^{(1)}$ represents the first Fibonacci convolution sequence [3].

$$
\text { 3. GENERATING FUNCTIONS FOR THE COEFFICIENTS OF } I_{n}(t)=n \int_{0}^{t} F_{n}(t) d t
$$

The preceding suggests it would be in order to consider the array for

$$
\int_{0}^{t} F_{n}(t) d t
$$

But this leads to an array containing fractions. To avoid this situation we consider the array for

$$
I_{n}(t)=n \int_{o}^{t} F_{n}(t) d t
$$

instead. This array now follows:
Array 3

n	t^{0}	t^{1}	t^{2}	t^{3}	t^{4}	t^{5}	t^{6}	t^{7}	t^{8}	t^{9}
0	0									
1	0	1								
2	0	0	1							
3	0	3	0	1						
4	0	0	4	0	1					
5	0	5	0	5	0	1				
6	0	0	9	0	6	0	1			
7	0	7	0	14	0	7	0	1		
8	0	0	16	0	20	0	8	0	1	
9	0	9	0	30	0	27	0	9	0	1

This array looks familiar since the array for the Lucas polynomials is Array 4 at the top of the next page.
It is easy to establish that

$$
L_{2 k-1}(t)=(2 k-1) \int_{0}^{t} F_{2 k-1}(t) d t=I_{2 k-1}(t)
$$

and

Array 4

n	t^{0}	t^{1}	t^{2}	t^{3}	t^{4}	t^{5}	t^{6}	t^{7}	t^{8}	t^{9}
0	2									
1	0	1								
2	2	0	1							
3	0	3	0	1						
4	2	0	4	0	1					
5	0	5	0	5	0	1				
6	2	0	9	0	6	0	1			
7	0	7	0	14	0	7	0	1		
8	2	0	16	0	20	0	8	0	1	
9	0	9	0	30	0	27	0	9	0	1
					...					
		$L_{2 k}(t)=(2 k) \int_{0}^{t} F_{2 k}(t) d t+2=I_{2 k}(t)+2$								

for $k=1,2,3, \cdots$; or if you prefer,

$$
D_{t}\left[L_{n}(t)\right]=n F_{n}(t)
$$

for $n=1,2,3, \cdots$.
It is interesting to note that in each of the above arrays if we consider the left-most column as the zero ${ }^{\text {th }}$ column, we do not obtain a Pascal-like triangle. However, if we consider the next column over as the zero ${ }^{\text {th }}$ column, then we do have a Pascal-like array and the results of [4] are applicable.

Array 5

n	t^{1}	t^{2}	t^{3}	t^{4}	t^{5}	t^{6}	t^{7}	t^{8}	t^{9}
0	0								
1	1								
2	0	1							
3	3	0	1						
4	0	4	0	1					
5	5	0	5	0	1				
6	0	9	0	6	0	1			
7	7	0	14	0	7	0	1		
8	0	16	0	20	0	8	0	1	
9	9	0	30	0	27	0	9	0	1

$$
\begin{array}{cccccc}
\frac{x\left(1+x^{2}\right)}{\left(1-x^{2}\right)^{2}} & \frac{x^{2}+x^{4}}{\left(1-x^{2}\right)^{3}} & \frac{x^{3}+x^{5}}{\left(1-x^{2}\right)^{4}} & \frac{x^{4}+x^{6}}{\left(1-x^{2}\right)^{5}} & \frac{x^{5}+x^{7}}{\left(1-x^{2}\right)^{5}} & \text { Column Generators } \\
0^{\text {th }} & 1^{\text {st }} & 2^{\text {nd }} & 3^{\text {rd }} & 4^{\text {th }} & \text { Column }
\end{array}
$$

If we denote the generator of the $0^{\text {th }}$ column by $q(x)$, then the column generator for the $k^{\text {th }}$ column ($k=0,1,2, \ldots$) is

$$
h_{k}(x)=q(x)\left[x /\left(1-x^{2}\right)\right]^{k} .
$$

The generating function for the row sums is

$$
G(x)=\sum_{k=0}^{\infty} h_{k}(x)=q(x) \frac{1-x^{2}}{\left(1-x-x^{2}\right)}=\left(1+x^{2}\right)\left(\frac{x}{1-x^{2}}\right)\left(\frac{1}{1-x-x^{2}}\right)
$$

The generating function for the rising diagonals is

$$
D(x)=\sum_{k=0}^{\infty} x^{k} h_{k}(x)=q(x) \cdot \frac{1-x^{2}}{1-2 x^{2}}=\left(1+x^{2}\right)\left(\frac{x}{1-x^{2}}\right)\left(\frac{1}{1-2 x^{2}}\right)
$$

4. RELATIONSHIPS AMONG THE GENERATING FUNCTIONS

We now observe some relationships between the generating functions $g_{k}(x), d_{k}(x)$ and $h_{k}(x)$. First

$$
d_{k}(x)=(k+1) x g_{k}(x)
$$

which was to have been anticipated in light of the connection between Array 2 and Problem H-131. However, the relationship between $h_{k}(x)$ and $g_{k}(x)$ is a little more surprising. Since Array 5 was obtained via an integration process, it might be felt that $h_{k}(x)$ should relate in some way to an integral of $g_{k}(x)$; but

$$
h_{k}(x)=\frac{x}{(k+1)} g_{k}^{\prime}(x)
$$

which is easy to verify. This formula can be used to investigate some integral relationships however. Assuming each function is defined on [$0, x$] and using an integration-by-parts formula we have

$$
(k+1) \int_{0}^{x} h_{k}(x) d x+\int_{0}^{x} g_{k}(x) d x=x g_{k}(x)
$$

Since $d_{k}(x)=(k+1) x g_{k}(x)$, we now have

$$
d_{k}(x)=(k+1)^{2} \int_{0}^{x} h_{k}(x) d x+(k+1) \int_{0}^{x} g_{k}(x) d x
$$

a formula involving all three generating functions for $k=0,1,2,3, \cdots$.

REFERENCES

1. Marjorie Bicknell, "A Primer for the Fibonacci Numbers: Part VII," The Fibonacci Quarterly, Vol. 8, No. 4 (Dec. 1970), pp. 407-420.
2. V. E. Hoggatt, Jr., "A New Angle on Pascal's Triangle," The Fibonacci Quarterly, Vol. 6, No. 4 (Dec. 1968), pp. 221-234.
3. V. E. Hoggatt, Jr., and Joseph Arkin, "A Bouquet of Convolutions," The Fibonacci Quarterly, to appear.
4. Stephen W. Smith and Dean B. Priest, "Row and Rising Diagonal Sums for a Type of Pascal Triangle," The Fibonacci Quarterly,
5. V. E. Hoggatt, Jr., Problem H-131, The Fibonacci Quarterly, Vol. 7, No. 3 (Oct. 1969), p. 285.
