SOME REMARKS ON THE PERIODICITY OF THE SEQUENCE OF FIBONACCI NUMBERS

T. E. STANLEY

The City University, St. John Street, London E.C.1, England

In the work of Wall [2], a function ϕ was defined by " $\phi(m)$ is the length of the period of the sequence of Fibon: acci numbers reduced to least non-negative residues modulo m, for $m>2$." Thus, the domain of ϕ is the set of positive integers greater than 2 , and the range was shown to be a subset of the set of all even integers. Below, I determine the range of ϕ exactly. In [1] I proved the following
Theorem A. If m is an integer greater than 3 then $\phi\left(F_{m}\right)=2 m$ if m is even and $\phi\left(F_{m}\right)=4 m$ if m is odd.
Here, F_{m} is the $m^{\text {th }}$ Fibonacci number, where

$$
F_{0}=0, \quad F_{1}=1, \quad F_{n+1}=F_{n}+F_{n-1} \quad(n \geqslant 1) .
$$

Theorem 2 of [2] shows that the values of ϕ are completely known provided its values at all prime powers are known. But, as the table of values included in [2] shows, the values that ϕ takes at primes do not seem to follow any simple pattern. In an attempt to find more of the values of ϕI will prove the following
Theorem B. If $m \geqslant 2$ then $\phi\left(F_{m-1}+F_{m+1}\right)=4 m$ if m is even and $\phi\left(F_{m-1}+F_{m+1}\right)=2 m$ if m is odd.
Theorems A and B have the following
Corollary. The range of ϕ is the set of all even integers greater than 4.
Proof. It is clear that we cannot have an integer n for which $\phi(n)=2$ or $\phi(n)=4$. Suppose that r is an even integer other than 2 or 4 . If r is a multiple of 4 , say $r=4 s$, then $\phi\left(F_{s-1}+F_{s+1}\right)=r$ if s is even, while $\phi\left(F_{s}\right)=r$ if s is odd and $s>3$. Also $\phi\left(F_{6}\right)=12$. If r is not a multiple of 4 , say $r=2 s$, where s is odd and $s>1$, then

$$
\phi\left(F_{s-1}+F_{s+1}\right)=r
$$

A subsidiary result is required to prove Theorem B. In the following, the symbol \equiv denotes congruence modulo $\left(F_{m-1}+F_{m+1}\right)$.
Lemma. For $1 \leqslant r \leqslant m$ let $G_{r}=F_{m-1}+F_{m+1}-F_{r}$. Then

$$
F_{m+r} \equiv\left\{\begin{array}{lll}
F_{m-r} & \text { if } & 0 \leqslant r \leqslant m \text { and } r \text { is even } \tag{i}\\
G_{m-r} & \text { if } & 1 \leqslant r \leqslant m-1 \text { and } r \text { is odd. }
\end{array}\right.
$$

If m is a positive even integer then

$$
\begin{align*}
& F_{2 m+r} \equiv G_{r} \text { if } 0 \leqslant r \leqslant m . \tag{ii}\\
& F_{3 m+r} \equiv \begin{cases}G_{m-r} & \text { if } \\
F_{m-r} & \text { if } \\
1 \leqslant r \leqslant m \text { and } r \text { is even } \\
F_{m} \text { and } r \text { is odd. }\end{cases}
\end{align*}
$$

Proof. We prove these results by induction on r.
(i) The assertion here is trivially true if $r=0$ or $r=1$. Suppose the result is true for $r-1$ and r. If $r+1$ is odd then

$$
\begin{aligned}
F_{m+r+1} & =F_{m+r}+F_{m+r-1} \equiv F_{m-r}+G_{m-r+1} \text { by hypothesis } \\
& =F_{m-1}+F_{m+1}+F_{m-r}-F_{m-r+1} \\
& =F_{m-1}+F_{m+1}-F_{m-(r+1)}=G_{m-(r+1)}
\end{aligned}
$$

If $r+1$ is even then

$$
\begin{aligned}
F_{m+r+1} & =F_{m+r}+F_{m+r-1} \\
& \equiv G_{m-r}+F_{m-(r-1)} \quad \text { by hypothesis } \\
& =F_{m-1}+F_{m+1}+F_{m-(r+1)} \\
& \equiv F_{m-(r+1)} .
\end{aligned}
$$

(ii) The case in which $r=0$ follows directly from (i) with $r=m$. The result is also true for $r=1$ because

$$
\begin{aligned}
F_{2 m+1} & =F_{2 m}+F_{2 m-1} \\
& \equiv F_{0}+G_{m-(m-1)} \text { by (i) } \\
& =G_{1}
\end{aligned}
$$

Suppose the result is true for $r-1$ and r. Then

$$
\begin{aligned}
F_{2 m+r+1} & =F_{2 m+r}+F_{2 m+r-1} \\
& \equiv G_{r}+G_{r-1} \text { by hypothesis } \\
& \equiv F_{m-1}+F_{m+1}-F_{r+1} \\
& =G_{r+1}
\end{aligned}
$$

(iii) The case in which $r=0$ follows directly from (ii) with $r=m$. When $r=1$ we have

$$
\begin{aligned}
F_{3 m+1} & =F_{3 m}+F_{3 m-1} \\
& \equiv G_{m}+G_{m-1} \text { by (ii) } \\
& =F_{m-1}+2 F_{m+1}-F_{m} \\
& \equiv F_{m-1}
\end{aligned}
$$

so that the result is true for $r=1$. Suppose it is true for $r-1$ and r. If $r+1$ is odd then

$$
\begin{aligned}
F_{3 m+r+1} & =F_{3 m+r}+F_{3 m+r-1} \\
& \equiv G_{m-r}+F_{m-r+1} \text { by hypothesis } \\
& \equiv F_{m-(r+1)}
\end{aligned}
$$

while if $r+1$ is even we have

$$
\begin{aligned}
F_{3 m+r+1} & =F_{3 m+r}+F_{3 m+r-1} \\
& \equiv F_{m-r}+G_{m-r+1} \\
& =G_{m-(r+1)}
\end{aligned}
$$

This finishes the proof of the Lemma.
We may now prove Theorem B by noticing that if m is even then the sequence of Fibonacci numbers reduced modulo ($F_{m-1}+F_{m+1}$) consists of repetitions of the numbers

$$
\begin{aligned}
& F_{0}, F_{1}, \cdots, F_{m}, F_{m+1}, F_{m-2}, G_{m-3}, F_{m-4,} G_{m-5}, \cdots, F_{2}, G_{1}, 0 \\
& G_{1}, G_{2}, \cdots, G_{m-1}, G_{m}, F_{m-1}, G_{m-2}, F_{m-3}, G_{m-4}, \cdots, G_{2}, F_{1}
\end{aligned}
$$

while if m is odd we obtain

$$
F_{0}, F_{1}, \cdots, F_{m}, F_{m+1}, F_{m-2}, G_{m-3}, F_{m-4}, G_{m-5}, \cdots, G, F_{1} .
$$

Thus, counting, and noticing that $G_{1} \neq F_{1}$, we obtain the required results.
Using Theorem A, it may be shown that if $m>4$ then

$$
\phi\left(F_{m-1}+F_{m+1}\right)=1 / 2\left(\phi\left(F_{m-1}\right)+\phi\left(F_{m+1}\right)\right)
$$

I conclude by conjecturing that if k is a positive integer with $m-k>3$ then

$$
\phi\left(F_{m-k}+F_{m+k}\right)=\frac{k}{2}\left(\phi\left(F_{m-k}\right)+\phi\left(F_{m+k}\right)\right)
$$

REFERENCES

1. T. E. Stanley, "A Note on the Sequence of Fibonacci Numbers," Math. Mag., 44, No. 1 (1971), pp. 19-22.
2. D. D. Wall, "Fibonacci Series Modulo m," Amer. Math. Monthly, 67 (1960), pp. 525-532.

*

PARITY TRIANGLES OF PASCAL'S TRIANGLE

S. H. L. KUNG

Jacksonville University, Jacksonville, Florida 32211

In the Pascal's triangle of binomial coefficients, $\binom{n}{r}$, let every odd number be represented by an asterisk, "*," and every even number by a cross, " \dagger." Then we discover another diagram which is quite interesting.
Every nine (odd) numbers form a triangle having exactly one (odd) even number in its interior (odd!). Thus we shall designate it as an Odd-triangle.
The even numbers also form triangles whose sizes vary but each of these triangles contains an even number of crosses. This set of triangles is called Even-triangles.
The present diagram ($n=31$) can be easily extended along the outermost apex of Pascal's triangle. Some partial: observations are:
(a) If $n=2^{i}-1$ and $0 \leqslant r \leqslant 2^{i}-1$, then $\binom{n}{r}$ is odd,
(b) If $n=2^{i}$ and $1 \leqslant r \leqslant 2^{i}-1$, then $\binom{n}{r}$ is even,
where i is a nonnegative integer.

