SOME REMARKS ON THE PERIODICITY OF THE SEQUENCE OF FIBONACCI NUMBERS

T. E. STANLEY

The City University, St. John Street, London E.C.1, England

In the work of Wall [2], a function $\underline{\phi}$ was defined by " $\underline{\phi}(m)$ is the length of the period of the sequence of Fibonacci numbers reduced to least non-negative residues modulo m, for m > 2." Thus, the domain of $\underline{\phi}$ is the set of positive integers greater than 2, and the range was shown to be a subset of the set of all even integers. Below, I determine the range of $\underline{\phi}$ exactly. In [1] I proved the following

Theorem A. If m is an integer greater than 3 then $\phi(F_m) = 2m$ if m is even and $\phi(F_m) = 4m$ if m is odd. Here, F_m is the m^{th} Fibonacci number, where

$$F_0 = 0, \quad F_1 = 1, \quad F_{n+1} = F_n + F_{n-1} \quad (n \ge 1).$$

Theorem 2 of [2] shows that the values of ϕ are completely known provided its values at all prime powers are known. But, as the table of values included in [2] shows, the values that ϕ takes at primes do not seem to follow any simple pattern. In an attempt to find more of the values of ϕ I will prove the following

Theorem B. If $m \ge 2$ then $\underline{\phi}(F_{m-1} + F_{m+1}) = 4m$ if m is even and $\underline{\phi}(F_{m-1} + F_{m+1}) = 2m$ if m is odd. Theorems A and B have the following

Corollary. The range of ϕ is the set of all even integers greater than 4.

Proof. It is clear that we cannot have an integer *n* for which $\phi(n) = 2$ or $\phi(n) = 4$. Suppose that *r* is an even integer other than 2 or 4. If *r* is a multiple of 4, say r = 4s, then $\phi(F_{s-1} + F_{s+1}) = r$ if *s* is even, while $\phi(F_s) = r$ if *s* is odd and s > 3. Also $\phi(F_s) = 12$. If *r* is not a multiple of 4, say r = 2s, where *s* is odd and s > 1, then

$$\oint(F_{s-1} + F_{s+1}) = r$$

A subsidiary result is required to prove Theorem B. In the following, the symbol \equiv denotes congruence modulo $(F_{m-1} + F_{m+1})$.

Lemma. For $1 \le r \le m$ let $G_r = F_{m-1} + F_{m+1} - F_r$. Then

(i)
$$F_{m+r} \equiv \begin{cases} F_{m-r} & \text{if } 0 \le r \le m \text{ and } r \text{ is even} \\ G_{m-r} & \text{if } 1 \le r \le m-1 \text{ and } r \text{ is odd} \end{cases}$$

If *m* is a positive even integer then

(iii)
$$F_{2m+r} \equiv G_r \text{ if } 0 \leq r \leq m .$$

(iii)
$$F_{3m+r} \equiv \begin{cases} G_{m-r} \text{ if } 0 \leq r \leq m \text{ and } r \text{ is even} \\ F_{m-r} \text{ if } 1 \leq r \leq m-1 \text{ and } r \text{ is odd }. \end{cases}$$

Proof. We prove these results by induction on r.

(i) The assertion here is trivially true if r = 0 or r = 1. Suppose the result is true for r - 1 and r. If r + 1 is odd then

$$F_{m+r+1} = F_{m+r} + F_{m+r-1} \equiv F_{m-r} + G_{m-r+1} \text{ by hypothesis}$$

= $F_{m-1} + F_{m+1} + F_{m-r} - F_{m-r+1}$
.
= $F_{m-1} + F_{m+1} - F_{m-(r+1)} = G_{m-(r+1)}$.

SOME REMARKS ON THE PERIODICITY OF THE SEQUENCE OF FIBONACCI NUMBERS

If r + 1 is even then

FEB. 1976

 $F_{m+r+1} = F_{m+r} + F_{m+r-1}$ = $G_{m-r} + F_{m-(r-1)}$ by hypothesis = $F_{m-1} + F_{m+1} + F_{m-(r+1)}$ = $F_{m-(r+1)}$.

(ii) The case in which r = 0 follows directly from (i) with r = m. The result is also true for r = 1 because

$$F_{2m+1} = F_{2m} + F_{2m-1}$$

= F_0 + G_{m-(m-1)} by (i)
= G_1

Suppose the result is true for r - 1 and r. Then

$$F_{2m+r+1} = F_{2m+r} + F_{2m+r-1}$$

$$\equiv G_r + G_{r-1} \text{ by hypothesis}$$

$$\equiv F_{m-1} + F_{m+1} - F_{r+1}$$

$$= G_{r+1} \qquad .$$

(iii) The case in which r = 0 follows directly from (ii) with r = m. When r = 1 we have

$$F_{3m+1} = F_{3m} + F_{3m-1}$$

= $G_m + G_{m-1}$ by (ii)
= $F_{m-1} + 2F_{m+1} - F_m$
= F_{m-1}

so that the result is true for r = 1. Suppose it is true for r - 1 and r. If r + 1 is odd then

$$F_{3m+r+1} = F_{3m+r} + F_{3m+r-1}$$

= $G_{m-r} + F_{m-r+1}$ by hypothesis
= $F_{m-(r+1)}$

while if r + 1 is even we have

$$F_{3m+r+1} = F_{3m+r} + F_{3m+r-1}$$

= $F_{m-r} + G_{m-r+1}$
= $G_{m-(r+1)}$.

This finishes the proof of the Lemma.

We may now prove Theorem B by noticing that if m is even then the sequence of Fibonacci numbers reduced modulo $(F_{m-1} + F_{m+1})$ consists of repetitions of the numbers

$$F_{0}, F_{1}, \dots, F_{m}, F_{m+1}, F_{m-2}, G_{m-3}, F_{m-4}, G_{m-5}, \dots, F_{2}, G_{1}, 0, G_{1}, G_{2}, \dots, G_{m-1}, G_{m}, F_{m-1}, G_{m-2}, F_{m-3}, G_{m-4}, \dots, G_{2}, F_{1}, G_{m-1}, G_{m-2}, F_{m-3}, G_{m-4}, \dots, G_{2}, F_{1}, G_{m-1}, G_{m-1}, G_{m-1}, G_{m-1}, G_{m-2}, F_{m-3}, G_{m-4}, \dots, G_{2}, F_{1}, G_{m-1}, G_{m-1}, G_{m-1}, G_{m-2}, G_{m-3}, G_{m-4}, \dots, G_{2}, F_{1}, G_{m-1}, G_{m-1}, G_{m-1}, G_{m-1}, G_{m-2}, G_{m-3}, G_{m-4}, \dots, G_{2}, F_{1}, G_{m-1}, G_{m-1}, G_{m-1}, G_{m-1}, G_{m-2}, G_{m-3}, G_{m-4}, \dots, G_{2}, G_{m-1}, G_{m-1}, G_{m-1}, G_{m-2}, G_{m-3}, G_{m-4}, \dots, G_{2}, F_{1}, G_{m-1}, G_{m-1}, G_{m-1}, G_{m-2}, G_{m-3}, G_{m-4}, \dots, G_{2}, F_{1}, G_{m-1}, G_{m-1}, G_{m-1}, G_{m-1}, G_{m-1}, G_{m-2}, G_{m-3}, G_{m-4}, \dots, G_{m-4}, \dots, G_{m-1}, G_{m-1}, G_{m-1}, G_{m-1}, G_{m-1}, G_{m-1}, G_{m-1}, G_{m-2}, G_{m-3}, G_{m-4}, \dots, G_{m-4}, \dots, G_{m-1}, G_{m-1},$$

while if *m* is odd we obtain

$$F_0, F_1, \dots, F_m, F_{m+1}, F_{m-2}, G_{m-3}, F_{m-4}, G_{m-5}, \dots, G_2, F_1$$

Thus, counting, and noticing that $G_1 \neq F_1$, we obtain the required results.

Using Theorem A, it may be shown that if m > 4 then

$$\Phi(F_{m-1} + F_{m+1}) = \frac{1}{2}(\Phi(F_{m-1}) + \Phi(F_{m+1})).$$

I conclude by conjecturing that if k is a positive integer with m - k > 3 then

$$\underline{\phi}(F_{m-k} + F_{m+k}) = \frac{\kappa}{2} \left(\underline{\phi}(F_{m-k}) + \underline{\phi}(F_{m+k})\right).$$

SOME REMARKS ON THE PERIODICITY OF THE SEQUENCE OF FIBONACCI NUMBERS

REFERENCES

T. E. Stanley, "A Note on the Sequence of Fibonacci Numbers," *Math. Mag.*, 44, No. 1 (1971), pp. 19–22.
 D. D. Wall, "Fibonacci Series Modulo *m," Amer. Math. Monthly*, 67 (1960), pp. 525–532.

PARITY TRIANGLES OF PASCAL'S TRIANGLE

S. H. L. KUNG

Jacksonville University, Jacksonville, Florida 32211

In the Pascal's triangle of binomial coefficients, $\binom{n}{r}$, let every odd number be represented by an asterisk, "*," and every even number by a cross, "t." Then we discover another diagram which is quite interesting.

Every nine (odd) numbers form a triangle having exactly one (odd) even number in its interior (odd!). Thus we shall designate it as an Odd-triangle.

The even numbers also form triangles whose sizes vary but each of these triangles contains an even number of crosses. This set of triangles is called Even-triangles.

The present diagram (n = 31) can be easily extended along the outermost apex of Pascal's triangle. Some partial observations are:

(a) If $n = 2^i - 1$ and $0 \le r \le 2^i - 1$, then $\binom{n}{r}$ is odd,

(b) If $n = 2^{i}$ and $1 \le r \le 2^{i} - 1$, then $\binom{n}{r}$ is even,

where *i* is a nonnegative integer.
