ON ISOMORPHISMS BETWEEN THE NATURALS AND THE INTEGERS

SAMUEL T. STERN

State University College at Buffalo, New York 14222

The mapping

$$
g(m)=\left[\frac{m}{2}\right](-1)^{m},
$$

where $[x]$ denotes the greatest integer in x, from the set of naturals N onto the set of all integers / is one-to-one. This mapping fails to preserve natural order and the operations of ordinary addition and multiplication. For while $2<3$, $g(2) \nless g(3)$; also $g(2+3) \neq g(2)+g(3)$ and $g(2 \cdot 3) \neq g(2) g(3)$. However, it is possible to define an appropriate order relation $\}$ and binary operations $(+)$ and (\cdot) on I, while retaining natural order and ordinary addition and multiplication on N such that g will become an isomorphism of N to I, preserving order, addition, and multiplication as follows:

$$
x\} y \text { means }\left\{\begin{array}{l}
|x|>|y| \text { if }|x| \neq|y| \tag{1}\\
x<0 \text { and } y>0 \text { if }|x|=|y|
\end{array}\right.
$$

(2)

$$
x(+) y=\left[\frac{1+|2 x-1 / 2|+|2 y-1 / 2|}{2}\right](-1)^{1+|2 x-1 / 2|+|2 y-1 / 2|}
$$

$$
\begin{equation*}
x(\cdot) y=\left[\frac{1+|4 x-1|+|4 y-1|+|4 x-1||4 y-1|}{8}\right](-1)^{\frac{1+|4 x-1|+|4 y-1|+|4 x-1||4 y-1|}{4}} \tag{3}
\end{equation*}
$$

Noting that $[m / 2]$ is equal to $m / 2$ if m is even and $(m-1) / 2$ if m is odd, it is easy to show that $m>n$ if and only if $g(m) \& g(n)$. Furthermore,

$$
g(m+n)=g(m)(+) g(n) \quad \text { and } \quad g(m n)=g(m)(\cdot) g(n) .
$$

An analogous treatment can be given the integers interpreted as equivalence classes of nonnegative integers. We let A be the set of all ordered pairs (a, b) of nonnegative integers and let $(a, b) \sim(c, d)$ if and only if $a+d=b+c$. This defines an equivalence relation \sim on A. Let B be the set of all equivalence classes of A with respect to this relation. Consider the mapping

$$
\begin{equation*}
f(m)=K\left(\frac{m}{4}\left(1+(-1)^{m}\right), \frac{m-1}{4}\left(1+(-1)^{m-1}\right)\right) \tag{4}
\end{equation*}
$$

where $K(a, b)$ denotes the equivalence class of A which contains (a, b). f is one-to-one from N onto B. For let $K(a, b)$ represent an arbitrary element of B. If $a=b$ then $f(1)=K(a, b)$. If $a=b+k, k$ a positive integer, then, $f(2 k)=K(a, b)$. If $b=a+k, k$ a positive integer, then $f(2 k+1)=K(a, b)$. Furthermore if

$$
K\left(\frac{m}{4}\left(1+(-1)^{m}\right), \frac{m-1}{4}\left(1+(-1)^{m-1}\right)\right)=K\left(\frac{n}{4}\left(1+(-1)^{n}\right), \frac{n-1}{4}\left(1+(-1)^{n-1}\right)\right)
$$

then $(-1)^{m}(2 m-1)=(-1)^{n}(2 n-1)$. Hence m and n must be either both even or both odd, and it follows that $m=n$.

The absolute value of an element $K(a, b)$ of B, denoted by $|a, b|$ is defined as follows:

$$
|a, b|=\left\{\begin{array}{ll}
K(a, b) & \text { if } a>b \tag{5}\\
K(b, a) & \text { if } a \leqslant b
\end{array} .\right.
$$

The order relation Δ is defined on B as follows:

$$
\begin{equation*}
K(a, b) \Delta K(c, d) \text { if and only if } a+d>b+c . \tag{6}
\end{equation*}
$$

The order relation ∇ is defined on B as follows:

$$
K(a, b) \nabla K(c, d) \text { means }\left\{\begin{array}{l}
|a, b| \Delta|c, d| \text { if }|a, \dot{b}| \neq|c . d| \tag{7}\\
a<b \text { and } c>d \text { if }|a, b|=|c, d| .
\end{array}\right.
$$

We show that with the relation of (7) on B and natural order on N the mapping (4) is an order isomorphism. For suppose that

$$
K\left(\frac{m}{4}\left(1+(-1)^{m}\right), \frac{m-1}{4}\left(1+(-1)^{m-1}\right)\right) \nabla K\left(\frac{n}{4}\left(1+(-1)^{n}\right), \frac{n-1}{4}\left(1+(-1)^{n-1}\right)\right)
$$

If these have the same absolute value, then by (7),

$$
(-1)^{m+1}(2 m-1)>1 \quad \text { and } \quad(-1)^{n+1}(2 n-1)<1
$$

From the first of these inequalities we see that m is odd and since $2 n-1$ is not zero $(-1)^{n+1}(2 n-1)$ must be a negative integer, whence n is even. Thus
that is,

$$
\begin{aligned}
\left|0, \frac{m-1}{2}\right| & =\left|\frac{n}{2}, 0\right| \\
K\left(\frac{m-1}{2}, 0\right) & =K\left(\frac{n}{2}, 0\right)
\end{aligned}
$$

which implies $m>n$.
On the other hand if the two equivalence classes have different absolute values then

$$
K\left(\frac{m}{2}, 0\right) \Delta K\left(\frac{n}{2}, 0\right)
$$

if m and n are both even,

$$
K\left(\frac{m-1}{2}, 0\right) \Delta K\left(\frac{n-1}{2}, 0\right)
$$

if m and n are both odd, and

$$
K\left(\frac{m-1}{2}, 0\right) \Delta K\left(\frac{n}{2}, 0\right)
$$

if m is odd and n even. In each case we have $m>n$. If m is even and n odd then

$$
K\left(\frac{m}{2}, 0\right) \Delta K\left(\frac{n-1}{2}, 0\right)
$$

which implies $m \geqslant n$. But $m \neq n$. Hence $m>n$. Conversely, let $m>n$. Then if m and n are even,

$$
\left|\frac{m}{2}, 0\right| \Delta\left|\frac{n}{2}, 0\right| \quad \text { and } \quad K\left(\frac{m}{2}, 0\right) \nabla K\left(\frac{n}{2}, 0\right) .
$$

If m and n are odd, then

$$
\left|0, \frac{m-1}{2}\right| \Delta\left|0, \frac{n-1}{2}\right| \quad \text { and } \quad K\left(0, \frac{m-1}{2}\right) \nabla K\left(0, \frac{n-1}{2}\right) .
$$

If m is odd and n even and if also $m=n+1$, then

$$
\left|0, \frac{m-1}{2}\right|=\left|\frac{n}{2}, 0\right|
$$

But if $m>n+1$, then

$$
\left|0, \frac{m-1}{2}\right| \Delta\left|\frac{n}{2}, 0\right|
$$

Either way

$$
K\left(0, \frac{m-1}{2}\right) \nabla K\left(\frac{n}{2}, 0\right)
$$

If m is even and n odd, then

$$
\left|\frac{m}{2}, 0\right| \Delta\left|0, \frac{n-1}{2}\right| \quad \text { and } \quad K\left(\frac{m}{2}, 0\right) \nabla K\left(0, \frac{n-1}{2}\right) .
$$

Thus we have shown that $m>n$ if and only if $f(m) \nabla f(n)$.
The operations \oplus, of addition and \otimes, of multiplication are defined on B as follows:
(8)

$$
\begin{gathered}
K(a, b) \oplus K(c, d)=\left\{\begin{array}{l}
K(a+c, b+d) \text { if } m, n \text { are even } \\
K(b+d+1, a+c) \text { if } m, n \text { are odd } \\
K(b+c, a+d) \text { if } m \text { is even, } n \text { odd } \\
K(a+d, b+c) \text { if } m \text { is odd, } n \text { even }
\end{array}\right. \\
K(a, b) \otimes K(c, d)=\left\{\begin{array}{l}
K(2(a-b)(c-d), 0) \text { if } m, n \text { are even } \\
K(c, d+2(a-b)(c-d)+b-a) \text { if } m, n \text { odd } \\
K(a+2(a-b)(d-c), b) \text { if } m \text { is even, } n \text { odd } \\
K(c+2(a-b)(d-c), d) \text { if } m \text { is odd, } n \text { even }
\end{array}\right.
\end{gathered}
$$

where m, n are the positive integers corresponding to (a, b) and (c, d), respectively in (4).
It is easy to show that

$$
f(m+n)=f(m) \oplus f(n) \quad \text { and } \quad f(m n)=f(m) \otimes f(n)
$$

A treatment similar to that above for arithmetic and geometric progressions can be found in [1].

REFERENCE

1. M. D. Darkow, "Interpretations of the Peano Postulates," Amer. Math. Monthly, Vol. 64, 1957, pp. 270-271.

A FIBONACCI CURIOSITY

LEON BANKOFF
 Los Angeles, California 90048

In the Fibonacci sequence $F_{0}=0, F_{1}=1, \cdots, F_{n}=F_{n-1}+F_{n-2}$,

> the sum of the digits of $F_{0}=0$
> " " " " " " $F_{1}=1$
> " " " " " " $F_{5}=5$
> " " " " " " $F_{10}=10$
> " " " " " " $F_{31}=31$
> " " " " " " $F_{35}=35$
> " " " " " " $F_{62}=62$
> " " " " " " $F_{72}^{62}=72$
*

