# A DENSITY RELATIONSHIP BETWEEN $a x+b$ AND $[x / c]$ 

## ROBERT W. STRINGALL

University of California, Davis, California 95615

This note is motivated by the following problem originating in combinatorial logic. Let $f$ and $g$ be the functions on the set of positive integers defined by $f(x)=3 x$ and $g(x)=[x / 2]$, where $[r]$ denotes the greatest integer less than or equal to the real number $r$. Let $\Gamma$ denote the collection of all composite functions formed by repeated applications of $f$ and $g$. For which positive integers $k$ does there exist $h \in \Gamma$ such that $h(1)=k$ ? For example, if $f, g$ and $\Gamma$ are defined as above, then

$$
f(1)=3, \quad f^{2}(1)=9, \quad f^{3}(1)=27, \quad g f^{3}(1)=13, \quad f g f^{3}(1)=39 \quad \text { and } \quad g f g f^{3}(1)=19 .
$$

Thus, given any number from the collection $\{3,9,27,13,39,39\}$ there exists an $h \in \Gamma$ such that $h(1)$ is the given number. The following theorem verifies that every positive integer can be obtained in this manner.
Before stating the theorem, the following conventions are adopted. The set of non-negative integers, the set of positive integers and the set of positive real numbers are denoted by $N, N^{+}$and $R^{+}$, respectively. If $f$ and $g$ are functions on $N$ to $N$, then the composite function $g \cdot f$ is defined by $g \cdot f(x)=g(f(x))$ and the functions obtained by repeated applications of $f, n$-times, will be denoted by $f^{n}$. If $r$ is a real number then the greatest integer less than or equal to $r$ is denoted by [r]. Finally, two integers $a$ and $c$ are said to be power related provided there exist $m, n \in N^{+}$such that $a^{m}=c^{n}$.

Theorem 1. Let $a \neq 1, c \neq 1$ be positive integers. Let $b \in N$ and let $f$ and $g$ be the functions on $N$ to $N$ defined by $f(x)=a x+b$ and $g(x)=[x / c]$. If $a$ and $c$ are not power related and if $u, v \in N^{+}$, then there exist $m, n \in N^{+}$ such that $g^{m} \cdot f^{n}(u)=v$.

Using this theorem with $a=3, b=0$ and $c=2$ and noting that 2 and 3 are not power related leads to the previously mentioned result.
A related theorem will be proved from which Theorem 1 will follow. Three lemmas will be employed. Indications of proof will be provided for all three.
Lemma 1. Let $a, c \in N^{+}, a \neq 1, c \neq 1$. The collection $\left\{a^{n} / c^{m}: m, n \in N\right\}$ is dense in $R^{+}$if and only if $a$ and $c$ are not power related.
Proof. This result is well known and is generally considered to be folklore; a guide to its proof is given.
Using the continuity of the logarithm and results found on pages 71-75 of [1], the following statements can be shown to be equivalent.
(a) The collection $\left\{a^{n} / c^{m}: n, m \in N\right\}$ is dense in $R^{+}$.
(b) The collection $\{n-m(\log c / \log a): n, m \in N\} \cap R^{+}$is dense in $R^{+}$.
(c) The quotient $(\log c / \log a)$ is irrational.
(d) The numbers $a$ abd $c$ are not power related.

Lemma 2. Let $a$ and $b$ be positive integers with the additional property that the collection $\left\{a^{n} / c^{m}: n, m \in N\right\}$ is a dense subset of $R^{+}$. Then if $n_{0} \in N^{+}$, the collection $\left\{a^{n} / c^{m}: n>n_{0} ; n, m \in N\right\}$ is also a dense subset of $R^{+}$.
Proof. The subset $\left\{\left(a^{n} / c^{m}\right)^{n_{0}}: n, m \in N\right\} \subseteq\left\{a^{n} / c^{m}: n>n_{0} ; n, m \in N\right\}$ is dense in $R^{+}$.
Lemma 3. Let $a, b \in N$, where $a \neq 0$ and $a \neq 1$. If $f$ is defined on $N$ by $f(x)=a x+b$, then

$$
f^{n}(x)=a^{n} x+\frac{a^{n}-1}{a-1} b=a^{n}\left(\frac{(a-1) x+b\left(1-a^{-n}\right.}{a-1}\right)
$$

for all $n \in N^{+}$.
Proof. A straightforward induction argument establishes the lemma.
Theorem 2. Let $a$ and $c$ be positive integers neither of which is 1 . Let $b \in N$. Let $f$ denote the function on $N$ defined by $f(x)=a x+b$. If $a$ and $c$ are not power related, then for all $u \in N^{+}$, the collection

$$
A(u)=\left\{\frac{f^{n}(u)}{c^{m}}: m, n \in N\right\}
$$

is dense in $R^{+}$.
Proof. Let $r \in R^{+}$and let $\epsilon>0$ be given. The quotient

$$
\frac{r(a-1)}{(a-1) u+b\left(1-a^{-n}\right)}
$$

decreases as $n$ increases and has limiting value

$$
\frac{r(a-1)}{(a-1) u+b}
$$

as $n \rightarrow \infty$. Choose $n_{0}$ such that $n>n_{0}$ implies

$$
\frac{r(a-1)}{(a-1) u+b}+\frac{\frac{\epsilon}{之}(a-1)}{(a-1) u+b}>\frac{r(a-1)}{(a-1) u+b\left(1-a^{-n}\right)}
$$

Then for $n>n_{0}$,

$$
\frac{r(a-1)}{(a-1) u+b\left(1-a^{-n}\right)}<\frac{(r+(\epsilon / 2))(a-1)}{(a-1) u+b}<\frac{(r+\epsilon)(a-1)}{(a-1) u+b} \leqslant \frac{(r+\epsilon)(a-1)}{(a-1) u+b\left(1-a^{-n}\right)} .
$$

Since $a$ and $c$ are not power related, Lemma 1 yields the fact that $\left\{a^{n} / c^{m}: m, n \in N\right\}$ is a dense subset of $R^{+}$. By Lemma 2, it is possible to choose $m_{1}, n_{1}$ such that $n_{1}>n_{0}$ and

$$
\frac{(r+(\epsilon / 2))(a-1)}{(a-1) u+b}<\frac{a^{n_{1}}}{c^{m_{1}}}<\frac{(r+\epsilon)(a-1)}{(a-1) u+b}
$$

It follows that

$$
\frac{r(a-1)}{(a-1) u+b\left(1-a^{-n_{1}}\right)}<\frac{a^{n_{1}}}{c^{m_{1}}}<\frac{(r+\epsilon)(a-1)}{(a-1) u+b\left(1-a^{-n_{1}}\right)}
$$

and

$$
r<\frac{a^{n_{1}}}{c^{m_{1}}} \frac{(a-1) u+b\left(1-a^{-n_{1}}\right)}{a-1}<r+\epsilon
$$

By Lemma 3,

$$
r<\frac{t^{n_{1}}(u)}{c^{m_{1}}}<r+\epsilon
$$

Hence $A(u)$ is dense in $R^{+}$.
An additional lemma will expedite the proof of Theorem 1.
Lemma 4. Let $c \in N^{+}$. Let $g$ be defined on $R^{+}$by $g(x)=[x / c]$. If $v \in N^{+}$and if $r$ is a real number such that $v c^{n} \leqslant r<(v+1) c^{n}$, then $g^{n}(r)=v$.
Proof. The proof is by induction on $n$. If $n=1$, then $v c \leqslant r \leqslant(v+1) c$ implies $r=v c+s$, where $s \in R^{+}$or $s=0$ and $0 \leqslant s<c$. It follows that

$$
g(r)=\left[\frac{v c+s}{c}\right]=\left[v+\frac{s}{c}\right] \quad \text { and } \quad \frac{s}{c}<1
$$

Hence $g(r)=v$. Suppose $g^{k}(r)=v$ whenever $v c^{k} \leqslant r<(v+1) c^{k}$. Suppose, in addition, that $v c^{k+1} \leqslant r_{0}<(v+1) c^{k+1}$. Then

$$
g^{k+1}\left(r_{0}\right)=g^{k}\left(\left[\frac{r_{0}}{c}\right]\right) \quad \text { and } \quad v c^{k} \leqslant \frac{r_{0}}{c}<(v+1) c^{k}
$$

It follows that

$$
v c^{k} \leqslant \frac{r_{0}}{c}<(v+1) c^{k}
$$

Hence by the induction hypothesis

$$
g^{k+1}\left(r_{0}\right)=g^{k} \cdot g\left(r_{0}\right)=g^{k}\left(\left[\frac{r_{0}}{c}\right]\right)=v .
$$

To prove Theorem 1, employ Theorem 2 to obtain positive integers $n$ and $m$ such that

$$
v<\frac{f^{n}(u)}{c^{m}}<v+1
$$

and apply Lemma 4.

## REFERENCE

1. Ivan Niven, "Irrational Numbers," The Carus Mathematical Monographs, No. 11, published by The Mathematical Association of America.

## Continued from page 22.

We can add any quantity $B$ to each term:
$x(a+B)^{m}+y(b+B)^{m}+(x+y-2)(a x+b y+B)^{m}=(x+y-2) B^{m}+y(a x+b y+B-b)^{m}+x(a x+b y+B-a)^{m}$ (where $m=1,2$ ).
A special case of a Fibonacci-type series is

$$
1^{m} \quad 2^{m} \quad 3^{m} \quad \cdots \quad n^{m}
$$

Consider the series when $m=2$ :
(1)

| 1 | 4 | 9 | 16 | 25 |
| :--- | :--- | :--- | :--- | :--- |

where

$$
F_{n}=3\left(F_{n-1}-F_{n-2}\right)+F_{n-3}
$$

[we obtain our coefficients from Pascal's Triangle], i.e.,

$$
(x+3)^{2}=3\left[(x+2)^{2}-(x+1)^{2}\right]+x^{2}
$$

I have found by conjecture that

$$
1^{m}-4^{m}-4^{m}-4^{m}+9^{m}+9^{m}+9^{m}-16^{m}=-0^{m}-12^{m}-12^{m}-12^{m}+7^{m}+7^{m}+7^{m}+15^{m}
$$

(where $m=1,2$ ).
[I hope the reader will accept the strange - $0^{m}$ for the time being.] If we express the series (1) above in the form
$a \quad b \quad 3(c-b)+a \quad$ etc.,
our multigrade appears as follows

$$
a^{m}-3 b^{m}+3 c^{m}-[3(c-b)+a]^{m}=-0^{m}-3(3 c-4 b+a)^{m}+3(2 c-3 b+a)^{m}+[3(c-b)]^{m}
$$

(where $m=1,2$ ).
We could, of course, write the above as

$$
\begin{aligned}
& \left(x^{2}\right)^{m}-3\left[(x+1)^{2}\right]^{m}+3\left[(x+2)^{2}\right]^{m}-\left[3\left[(x+2)^{2}-(x+1)^{2}\right]+x^{2}\right]^{m} \\
& \quad=-0^{m}-3\left[x^{2}-4(x+1)^{2}+3(x+2)^{2}\right]^{m}+3\left[x^{2}-3(x+1)^{2}-4(x+2)^{2}\right]^{m}+\left[3\left[(x+2)^{2}-(x+1)^{2}\right]^{m}\right. \\
& \text { (where } m=1,2) . \\
& \text { Continued on page 82. }
\end{aligned}
$$

