LUCAS POLYNOMIALS AND CERTAIN CIRCULAR FUNCTIONS OF MATRICES

J. E. WALTON

The University of New England, Armidale, N.S.W., Australia

INTRODUCTION

1. The fundamental function $U_{n}(p, q)$ as defined by Lucas [4] uses the second-order recurrence relation
(1)

$$
U_{n+2}=p U_{n+1}-q U_{n} \quad(n \geqslant 0)
$$

with initial values $U_{0}=0$ and $U_{1}=1$. For example, we find by calculation, that

$$
\begin{cases}U_{2}=p & U_{3}=p^{2}-q \\ U_{4}=p^{3}-2 p q & U_{5}=p^{4}-3 p^{2} q+q^{2} \ldots\end{cases}
$$

so that, by induction
(2)

$$
U_{n}=\sum_{r=0}^{[n / 2]}(-1)^{r}\binom{n-r}{r} p^{n-2 r^{r} r}
$$

As the sequence $\left\{U_{n}\right\}$ has only been defined for $n \geqslant 0$, and as we often require negative-valued subscripts, we find, by calculation of the U 's that

$$
\begin{equation*}
U_{-n}=-q^{-n} U_{n} \tag{3}
\end{equation*}
$$

to allow unrestricted values of n.
2. In addition, Lucas [4] also defined the primordial function $V_{n}(p, q)$ by
(4)

$$
V_{n+2}=p V_{n+1}-q V_{n} \quad(n \geqslant 0)
$$

with $V_{0}=2$ and $V_{1}=p$. For example,

$$
\left\{\begin{align*}
V_{2}=p^{2}-2 q & V_{3}=p^{3}-3 p q \\
V_{4}=p^{4}-4 p^{2} q+2 q^{2} & V_{5}=p^{5}-5 p^{3} q+5 p q^{2}
\end{align*}\right.
$$

As in Lucas [4], it can easily be verified that
(5)

$$
V_{2 n+1}=p U_{2 n+1}-2 q U_{2 n}
$$

and
(6)

$$
V_{2 n+1}=2 U_{2 n+2}-p U_{2 n+1}
$$

$3 \ln$ [1], Barakat considered the matrix exponential e^{X} for the 2×2 matrix
where he took

$$
X=\left[\begin{array}{ll}
a_{11} & a_{12} \tag{7}\\
a_{21} & a_{22}
\end{array}\right]
$$

(8)

$$
\operatorname{tr} X=p \quad \text { and } \quad \operatorname{det} X=q
$$

By showing that we could express X^{n} in terms of the U_{n} for unrestricted values of n, viz:
(9)

$$
X^{n}=U_{n} X-q U_{n-1} I \quad \text { and } \quad X^{-n}=-q U_{-n} X^{-1}+U_{-n+1} I
$$

(where $/$ is the unit matrix of order 2).
Barakat [1] was then able to obtain various summation formulas for the Lucas polynomials by the use of the matrix exponential function, where

$$
\begin{equation*}
e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n} \quad \text { and } \quad e^{-x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{-n} \tag{10}
\end{equation*}
$$

4. It is the purpose of this paper to extend the work of Barakat [1] by considering the matrix sine and cosine for 2×2 matrices, and the ir corresponding connections with the sequences $\left\{U_{n}\right\}$ and $\left\{v_{n}\right\}$. As special cases, we will then examine the relationships between the Lucas polynomials and the Chebychev polynomials. We commence with an investigation of the sine of a matrix. For every square matrix X, the sine of X is defined by the power series
(11)

$$
\sin X=\sum_{n=0}^{\infty} \frac{(-1)^{n} X^{2 n+1}}{(2 n+1)!}
$$

We then give a set of parallel results for the cosine function, where we define the cosine of every square matrix X by the power series

$$
\begin{equation*}
\cos X=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} \tag{12}
\end{equation*}
$$

Expansions (11) and (12) are perfectly valid since, as the functions $\sin z$ and $\cos z$ converge for all z, the eigenvalues of X lie within the circle of convergence of radius $R=\infty$.

Summation Formulas - The Sine

5. If we substitute (9) into (11), then

$$
\sin X=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(U_{2 n+1} X-q U_{2 n}\right)
$$

Thus, we have
(13)

$$
\sin x=x \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} U_{2 n+1}-1 q \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} u_{2 n}
$$

6 By using Sylvester's matrix interpolation formula, viz. Bellman [2]:
If $f(t)$ is a polynomial of degree $\leqslant N-1$, and if $\lambda_{1}, \lambda_{2}, \cdots \lambda_{N}$ are the N distinct eigenvalues of X, then

$$
\begin{equation*}
f(X)=\sum_{i=1}^{N} f\left(\lambda_{i}\right) \prod_{\substack{1 \leqslant j \leqslant N \\ j \neq t}}\left[\frac{x-\lambda_{i} I}{\lambda_{i}-\lambda_{j}}\right] \tag{14}
\end{equation*}
$$

we can show that if λ_{1} and λ_{2} are the eigenvalues of our 2×2 matrix X defined in (7), then

$$
\left.f(X)=\sum_{i=1}^{2} f\left(\lambda_{i}\right) \prod_{\substack{1 \leqslant j \leqslant N \\ j \neq 1}}\left[\frac{x-\lambda_{i} I}{\lambda_{i}-\lambda_{j}}\right]=f\left(\lambda_{1}\right) \prod_{\substack{1 \leqslant j \leqslant N \\ j \neq 1}}\left[\frac{x-\lambda_{1} I}{\lambda_{1}-\lambda_{j}}\right]+f \lambda_{2}\right) \prod_{\substack{1 \leqslant j \leqslant N \\ j \neq 2}}\left[\frac{x-\lambda_{2} I}{\lambda_{2}-\lambda_{j}}\right]=
$$

$$
\left.=\frac{1}{\lambda_{1}-\lambda_{2}}\left\{\left(x-\lambda_{1} \mid\right) f \lambda_{1}\right)\right\}-\frac{1}{\lambda_{1}-\lambda_{2}}\left\{\left(x-\lambda_{2} \mid\right) f\left(\lambda_{2}\right)\right\}
$$

Hence, we have

$$
\sin X=\frac{1}{\lambda_{1}-\lambda_{2}}\left\{\left(X-\lambda_{2} I\right) \sin \lambda_{1}-\left(X-\lambda_{2} I\right) \sin \lambda_{2}\right\}
$$

so that
(15)

$$
\left.\sin X=\frac{1}{\lambda_{1}-\lambda_{2}}\left[\left(\sin \lambda_{1}-\sin \lambda_{2}\right) X-\lambda_{1} \sin \lambda_{1}-\lambda_{2} \sin \lambda_{2}\right) /\right]
$$

7. Now, the characteristic equation of X is

$$
\begin{aligned}
|X-\lambda| & =\left|\begin{array}{ll}
a_{11}-\lambda & a_{12} \\
a_{21} & a_{22}-\lambda
\end{array}\right| \\
& =a_{11} a_{22}-\lambda\left(a_{11}+a_{22}\right)+\lambda^{2}-a_{12} a_{21} \\
& =\lambda^{2}-p \lambda+q=0 .
\end{aligned}
$$

Thus, as in Barakat [1], the eigenvalues λ_{1} and λ_{2} satisfy the quadratic equation
(16)

$$
\lambda^{2}-p \lambda+q=0
$$

so that
(17)
(18)

$$
\begin{gathered}
\lambda_{1}=\frac{p+\delta}{2} \quad \text { and } \quad \lambda_{2}=\frac{p-\delta}{2} \quad \text { (say) } \\
\delta=\Delta^{1 / 2}=\left(p^{2}-4 q\right)^{1 / 2}
\end{gathered}
$$

8. Substituting these values for λ_{1} and λ_{2} in (15) eventually gives
(19) $\quad \sin X=\left[2 \delta^{-1} \sin \frac{\delta}{2} \cos \frac{p}{2}\right] x-\left[\delta^{-1} p \sin \frac{\delta}{2} \cos \frac{p}{2}+\sin \frac{p}{2} \cos \frac{\delta}{2}\right] /$.

Thus, on comparing Eqs. (13) and (19), we see that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} \quad U_{2 n+1}=2 \delta^{-1} \sin \frac{\delta}{2} \cos \frac{p}{2} \tag{20}
\end{equation*}
$$

and
(21)

$$
q \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} U_{2 n}=\delta^{-1} p \sin \frac{\delta}{2} \cos \frac{p}{2}+\sin \frac{p}{2} \cos \frac{\delta}{2}
$$

9. If we rewrite (5) in the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} v_{2 n+1}=p \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} U_{2 n+1}-2 q \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} u_{2 n} \tag{22}
\end{equation*}
$$

we have, on using (20) and (21), that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} v_{2 n+1}=-2 \sin \frac{p}{2} \cos \frac{\delta}{2} \tag{23}
\end{equation*}
$$

Re-writing (6) as

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} v_{2 n+1}=2 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} U_{2 n+2}-p \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} U_{2 n+1} \tag{24}
\end{equation*}
$$

gives
(25)

$$
2 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} U_{2 n+2}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} v_{2 n+1}+p \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} U_{2 n+1}
$$

Using (20) and (24) in (25) yields, on calculation,
(26)

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} U_{2 n+2}=\delta^{-1} p \sin \frac{\delta}{2} \cos \frac{p}{2}-\sin \frac{p}{2} \cos \frac{\delta}{2}
$$

Summation Formulas - The Cosine

10. If we parallel the work in paragraphs 5 to 9 for the cosine of the matrix X as defined in (12), we also have the following results:
(27)

$$
\cos x=1-x \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n)!} u_{2 n}+1 q \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n)!} u_{2 n-1}
$$

so that

$$
\begin{equation*}
\cos X=-X \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n)!} U_{2 n}+1 q \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n)!} U_{2 n-1} \tag{28}
\end{equation*}
$$

since, when $n=0$,

$$
-x(-1) U_{0}=0
$$

on using (1) and

$$
I q U_{-1}=1 q \cdot q^{-1}=1
$$

on using (3).

$$
\begin{equation*}
\cos X=\left[-2 \delta^{-1} \sin \frac{p}{2} \sin \frac{\delta}{2}\right] x-\left[\cos \frac{p}{2} \cos \frac{\delta}{2}-\delta^{-1} p \sin \frac{p}{2} \sin \frac{\delta}{2}\right]^{\prime} \tag{29}
\end{equation*}
$$

(30)

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n)!} U_{2 n}=2 \delta^{-1} \sin \frac{p}{2} \sin \frac{\delta}{2}
$$

$$
\begin{equation*}
q \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n)!} U_{2 n-1}=\delta^{-1} p \sin \frac{p}{2} \sin \frac{\delta}{2}-\cos \frac{p}{2} \cos \frac{\delta}{2} \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n)!} v_{2 n}=2 \cos \frac{p}{2} \cos \frac{\delta}{2} \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n)!} U_{2 n+1}=\delta^{-1} p \sin \frac{p}{2} \sin \frac{\delta}{2}+\cos \frac{p}{2} \cos \frac{\delta}{2} \tag{33}
\end{equation*}
$$

Chebychev Polynomials

11. As in Horadam [3], which deals among other things with Chebychev polynomials in relation to a certain generalized recurrence sequence, write

$$
\begin{equation*}
x=\cos \theta \text { with } p=2 x \text { and } q=1 . \tag{34}
\end{equation*}
$$

Then the U_{n} are precisely the Chebychev polynomials of the first kind, $S_{n}(x)$. Thus

$$
\begin{equation*}
U_{n}(2 x, 1)=S_{n}(x)=\frac{\sin n \theta}{\sin \theta} \quad(n \geqslant 0) \tag{35}
\end{equation*}
$$

where
(36)

$$
S_{n+2}=2 x S_{n+1}-S_{n} \text { with } S_{0}=0 \text { and } S_{1}=1
$$

Likewise, the V_{n} are the Chebychev polynomials of the second kind, $t_{n}(x)=2 T_{n}(x)$, where
(37)
so that
(38)

$$
T_{n+2}=2 x T_{n+1}-T_{n} \text { with } T_{0}=1 \text { and } T_{1}=x
$$

$$
t_{0}=2 \quad \text { and } \quad t_{1}=2 x(=p)
$$

Thus

$$
V_{n}(2 x, 1)=2 T_{n}(x)=2 \cos n \theta \quad(n \geqslant 0) .
$$

Putting $q=1$ in (20) and using (35) yields

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} U_{2 n+1} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} S_{2 n+1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} \sin (2 n+1) x}{(2 n+1)!\sin x} \\
& =\frac{1}{\sin X} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left\{\frac{e^{i(2 n+1) x}-e^{-i(2 n+1) x}}{2 i}\right\} \\
& =\frac{1}{\sin X} \sum_{n=0}^{\infty}\left\{\frac{(-1)^{n}\left(e^{i x}\right)^{2 n+1}}{(2 n+1)!}-\frac{(-1)^{n}\left(e^{-i x}\right)^{2 n+1}}{(2 n+1)!}\right\} \\
& =\frac{1}{2 i \sin x}\left\{\sin e^{i x}-\sin e^{-i x}\right\} \\
& =\frac{1}{2 i \sin x} 2 \cos \frac{e^{i x}+e^{-i x}}{2} \sin \frac{e^{i x}-e^{-i x}}{2} \\
& =\frac{1}{i \sin x} \cos (\cos x) \sin (i \sin x) \\
& =\frac{1}{i \sin x} \cos (\cos x) i \sinh (\sin x) \\
& =\frac{\cos (\cos x) \sinh (\sin x)}{\sin x}
\end{aligned}
$$

Thus, we have
(40)

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} \sin (2 n+1) x}{(2 n+1)!\sin x}=\frac{\cos (\cos x) \sinh (\sin x)}{\sin x}
$$

Similarly, from (21), (30) and (32) and using (35) and (37), it can be shown that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} \cos (2 n+1) x=\sin (\cos x) \cosh (\sin x) \tag{41}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n+1} \sin 2 n x}{(2 n)!\sin x}=\frac{\sin (\cos x) \sinh (\sin x)}{\sin x} \tag{42}
\end{equation*}
$$

and
(43)

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n+1} \cos 2 n x}{(2 n)!}=-\cos (\cos x) \cosh (\sin x)
$$

REFERENCES

1. R. Barakat, "The Matrix Operator e^{X} and the Lucas Polynomials,"J. Math. and Phys., Vol. 43, No. 4, 1964, pp.
2. R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York, 1970 (2nd edition), p. 102.
3. A. F. Horadam, "Tschebyscheff and Other Functions Associated with the Sequence $\left\{w_{n}(a, b ; p, q)\right\}$," The Fibonacci Quarterly, Vol. 7, No. 1 (February 1969), pp. 14-22.
4. E. Lucas, Théorie des nombres, Albert Blanchard, Paris, 1961, Ch. 18.
