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INTRODUCTION 
1. The fundamental function Un(p,q) as defined by Lucas [4] uses the second-order recurrence relation 

(1) U„+2 = pUn+i-qUn (n > 0) 

with initial values U0 = 0 and Lll = 1. For example, we find by calculation, that 

(U4=p*-2pq Us = p4 -3p*q+q* -
so that, by induction 

[n/2] 

(2) un= Y. ('1,r (n7r) pn~2r*r 

As the sequence <Un I has only been defined for n > 0, and as we often require negative-valued subscripts, we 
find, by calculation of the U'% that 
(3) U-n = -q-nUn 

to allow unrestricted values of A?. 
2. In addition, Lucas [4] also defined the primordial function Vn(p,q) by 

(4) Vn+2 = pVn+1-qVn (n > 0) 

with l/0 = 2 and Vl = p. For example, 
V* = P3-3pq 

-2q2 SA = ps -5p3q + 5pq2 
iV2=p*-2q 

14 ' \V4 =p*-4p*q+; 

As in Lucas [4], it can easily be verified that 
(5) V2n+1 = pU2n+1~2qU2n 

and 
(6) ^2n+1 = 2U2n+2~9^2n+1 • 

3 In [1], Barakat considered the matrix exponential ex for the 2 x 2 matrix 
ati ax 

S 21 ^22 S 
(7) X 

where he took 
(8) trX = p and detX = q. 
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By showing that we could express A^ in terms of the Un for unrestricted values of n, viz: 

(9) Xn = UnX-qUn^l and X~n = -qU-nX~1 + U-n+1l 

(where / is the unit matrix of order 2). 
Barakat [1] was then able to obtain various summation formulas for the Lucas polynomials by the use of the ma-

trix exponential function, where 

7 X'n (10) ex = V J-Xn and e'x - ] T , 
*-* n! *-* n! 
n=0 n-0 

4. It is the purpose of this paper to extend the work of Barakat [1] by considering the matrix sine and cosine for 
2x2 matrices, and their corresponding connections with the sequences i(Jn I and <Vn i . As special cases, we 
will then examine the relationships between the Lucas polynomials and the Chebychev polynomials. We commence 
with an investigation of the sine of a matrix. For every square matrix X, the sine of X is defined by the power series 

( i i ) s in* = V l-U"**"' 
n=0 

We then give a set of parallel results for the cosine function, where we define the cosine of every square matrix X by 
the power series 

(12) «,*-£ t-iy^p. 

Expansions (11) and (12) are perfectly valid since, as the functions s in/ and cosz converge for allz/ the eigenvalues 
of X lie within the circle of convergence of radius R = °° . 
Summation Formulas - The Sine 

5. If we substitute (9) into (11), then 

L 
n=0 

Thus, we have 

" * = £ ^~iU2n+lX-qU2nl) 

H3) ,hJf';fE|^r^r*i;^«* 
n=0 n-0 

6 By using Sylvester's matrix interpolation formula, viz. Bellman [2 ] : 
If f(t) is a polynomial of degree < N - 7, and if \ , \ , — X/v are t n e N distinct eigenvalues of X, then 

(14) fM*Y, f(ki} n f^ l ' 

we can show that if Xx and X> are tfre eigenvalues of our 2x 2 matrix X defined in (7), then 

~ 1^'<N I Ay - Xy f<j<N Xj - \j /<y</V I K - X; J 
'~7 JH J

 J¥1
 L J 1*2 
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Hence, we have 

s i n * = ^ x { W - X a / ; $ i n X 1 - ( X - X ^ s ' n ^ } 

so that 

(15) $\nX = r fsinXt - s i n X ^ - fXt sinXx -X 3 s i nX 2 ^ / 

7. Now, the characteristic equation of X is 

I d,-, A 3 1 2 

a22 - X 

= X2 -p\+q = 0 . 

Thus, as in Barakat [1 ] , the eigenvalues Xx and X2 satisfy the quadratic equation 

(16) X2-pX+q = 0 

so that 

(17) X, = ^A and 
(18) 

8. Substituting these values for Xj and X^ in (15) eventually gives 

(19) s i n * = b s ^ s i n | cos f ] * - j V ' p s i n | c o s | * s i n | cos | | / . 

Thus, on comparing Eqs. (13) and (19), we see that 

\=BJ± and \ = £ y i (say) 
5 = Ay' = (p2-4g)'/i . 

(20) 

and 

(21) 

/.!- 5 ^ ^ r ^ - ^ S i n | c o S | 
/?=0 

9. If we rewrite (5) in the form 

" ^ (^TW U2n = h'1p sin 2 cos I *$in f cos ! 

(22) 
M;" £ ^ V2-+1=p i £h< U2n+l'2q z ^V ^ 

H=0 _ n
 f l - ° /?-0 

we have, on using (20) and (21), that 
oo 

(23) £ ̂  V2"+1 = "2 Si" f C°S 

Re-writing (6) as 
oo oo 

(-1)" u _ , V (-1)" 
I 

n=0 

(-1)" 

^ 0 A7*0 
gives 

(25) 'S^^-SI^WJ:-^ (2n + 1)1 U2n+2 2^ (2n + 1)1 
n=0 n=0 

Using (20) and (24) in (25) yields, on calculation, 
n~0 

(2n + 1)! 7
 U2n+1 
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(26) U JL^JJ U2n+2 = 8'1p sin | cos J - sin | cos | • 
n=0 

Summation Formulas - The Cosine 
10. if we parallel the work in paragraphs 5 to 9 for the cosine of the matrix X as defined in (12), we also have 

the following results: oo oo 

(27) cos* - 1-X £ <=£- U2nHQ £ *=$£ V2n-t 

SO that 

(28) cos* = -X £ ) (=/j£- U2n + IQ f ) kjgl. U2n_, 

since, when/? = 0, 

on using (1) and 

on using (3). 
(29) 

(2n)! "dn H *-o (2n)! 
n=0 n=0 

-X(-7)UQ = 0 

lqU-<i = lq-q~1 = I 

cosX= r--?S"/ sin | sin | ] * - j cos | cos | - S ' ^ s i n | sin | 1 , 

(30) £ < T 2 ^ £ / ^ - 2 6 " / | i n f l , n y 

oo 

(31) q V £ j g ? L </2„_7 = s-'/ i s in J sin | - cos | cos | 

OO 

(32) £ t i g - l / 2 „ = f c o s f c o s f 

OO 

(33) V t g _ </2„+; = S-'p sin | sin | + cos | cos | 

Chebychev Polynomials 
11. As in Horadam [3], which deals among other things with Chebychev polynomials in relation to a certain gen-

eralized recurrence sequence, write 
(34) x = cos0 with p = 2x and q = 1. 

Then the Un are precisely the Chebychev polynomials of the first kind, Sn(x), Thus 

(35) Un(2x, 1) - Sn(x) = | M 0 (n > 0), 

where 
(36) Sn+2 = 2xSn+1-Sn with S0 = 0 and Sx = 1. 

Likewise, the Vn are the Chebychev polynomials of the second kind, tn(x) - 2Tn(x), where 
(37) Tn+2 = 2xTn+1-Tn with T0 = 1 and Tx - x 
so that 
(38) f0 = 2 and ^ = 2x(=p). 

Thus 



1976] LUCAS POLYNOMIALS AND CERTAIN CIRCULAR FUNCTIONS OF MATRICES 87 

(39) V„(2x, 1) = 2T„M = 2cosn6 (n > 0). 

Putting q = 1 in (20) and using (35) yields 

J^TIT,
 u2"+i ~ I- J2TTIW S2n+1M ' <L 

n=0 n=0 n=0 
L (2n+1)I U2n+1 ~ ^ / S i + / ; / S 2 n + ' W " ^ tin + Manx 

1=0 n=C 

1 v ^ " J'7'2"*7 

i i n * *-* (2n + 1)1 \ 

H)x _e-i(2n+1)x 

n-0 

. _ / _ V | (-1)n(e'*)2n+1 _ (-1)n(e~ixr+1 \ 

^r-:— 4 sine — sine *• 2/smx 1 * 

2/sin* 
-'— 2cose—hr— sin e-—/— 

cos fcos xj sin (i $mx) 
1 smx 

cosfcosxj/sinh (mx) 
1 s i n * 
cosfcosxjsinh (%\nx) 

sin* 
Thus, we have 

(—\)n sin (2n + 1)x _. cos fcosxjsinh (%\x\x) 
(2n+1)!$\nx sinx 

Similarly, from (21), (30) and (32) and using (35) and (37), it can be shown that 

(-Dn 

(2n + 1)1 

n=0 

(41) iL o iTT w$(2n+1)x = sin (cosxlcosh hmx) 
n=0 

oo 

(A?) V * (-Dn+1 s\n2nx = sin /cosxjsinh fsinxj 
1 ' ^ (2n)!$\x\x mx 

n=0 
and 

(43) £ (~Vn+(2nT2n~ = " C ° S toS ^ C ° S h ft'" ^ 
A7=0 
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