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INTRODUCTION
1. The fundamental function U, (p,q) as defined by Lucas [4] uses the second-order recurrence relation
(1 Un+2 = pUn+1—1qUp (n = 0)
with initial values U, =0 and U/, = 1. For example, we find by calculation, that
(1) {Uz =p Uy =p*—gq
Uy = p*—2pq Us = p* —3p*q+q* -

so that, by induction

[n/2]
) U, = Z (—1)" (n : r) pn-2rqr

r=0

As the sequence {U,,} has only been defined for n > 0, and as we often require negative-valued subscripts, we
find, by calculation of the U's that

3) Up = —q7"Up
to allow unrestricted values of 7.

2. In addition, Lucas [4] also defined the primordial function V,,(p,q) by

(4) Vpt2 = pVpsr1—qVp (n > 0
with VV, =2 and V, = p. For example,
, { V, =p*-2 V, = p* - 3pq
4" V, = p*—4p2q+2g° Vs = ps — 5p3q + 5pg*

As in Lucas [4], it can easily be verified that

(5) Von+1 = pUzn+1—29U2,
and
(6) Van+1 = 2Uzp+2—pUz2n+1 .
3 In [1], Barakat considered the matrix exponential eX for the 2 x 2 matrix
a a
o X - [a;* ] '
where he took
(8) trX =p and detX = gq.
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By showing that we could express X” in terms of the Up for unrestricted values of n, viz:

9@ X" = UpX —qUp-ql and X" = —qUopX T+ U_pgql

(where / is the unit matrix of order 2).
Barakat [1] was then able to obtain various summation formulas for the Lucas polynomials by the use of the ma-
trix exponential function, where

(10) =2 X" . eX- Z L xn
n=0 n=0

4. It is the purpose of this paper to extend the work of Barakat [1] by considering the matrix sine and cosine for
2x 2 matrices, and their corresponding connections with the sequences {U,,} and {V,, } As special cases, we
will then examine the relationships between the Lucas polynomials and the Chebychev polynomials. We commence
with an investigation of the sine of a matrix. For every square matrix X, the sine of X is defined by the power series

2n+1
(11) sinX = Z = (12)n>-:1,),|

We then give a set of parallel results for the cosine function, where we define the cosine of every square matrix X by
the power series

n
(12) cos X = ,,Z=o -1) {2”),

Expansions (11) and (12) are perfectly valid since, as the functions sin z and cos z converge for all z, the eigenvalues
of X lie within the circle of convergence of radius B = .

Summation Formulas — The Sine
5. If we substitute (9) into (11), then

s (_qjn
sinX = z (%%Um (Uan+1X — qU2pl)
n=0 )
Thus, we have

n
(13) sin X = X }: (2n+7)’ — Z ((nl’”, Usn

6 By using Sylvester's matrix interpolation formula, viz. Bellman [2] :
If 7(t) is a polynomial of degree </ — 7, and if \,, ,, -« Ay are the / distinct eigenvalues of X, then

N
X—=Nl
(14) fix) = ) 1 ! ,
2 ™ r5j<n {N-N]
J#r

we can show that if A, and A, are thie eigenvalues of our 2x 2 matrix X defined in (7), then

2

X -\ X -\ X-\1

fix) = (N II ! = f —= 1 +f\,) I =

oo § ™) 1<G<N [)‘i")\/:l ™) 1<£I<N [7\ )\/:l P 1<j<N [N—N]
j#T j#1 j#2
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e kz {ox=nnm) }- - k,{ (X =N 100 }
Hence, we have
ey 1& { X =00 sinn, = (X =2\ )sinn }
so that
(15) sinX = X,"l-AT [(sinx, —sin X =M, sink, ~A, sin)\z)l]
7. Now, the characteristic equation of X is
a,—N a
[X-N| = a;: a,:f -
Fidy18,y, — )\{au +322)+ - 1,8y
=N -p\+tg = 0.
Thus, as in Barakat [1], the eigenvalues \, and A, satisfy the quadratic equation
(16) A2 —pA+g =
so that
(17 N = &}é and N = ’12 8 (say)
(18) 5= A% = (pr—49)% .
8. Substituting these values for \, and A, in (15) eventually gives
inx = [2577sin & a] _[-7-§ L 4gin & <§_1
(19) sin X [26 sin 5 cos 5 X 8~ "p sin 5 cos 5 #sin 5 cos 3 /.
Thus, on comparing Egs. (13) and (19), we see that
_ os=Ta 6 )
(20) , E (0 +-7—), Uop+1 = 267" sin F sz
and
(21 q Z Usp = 8 'psin 8 cos £ +sin 2 cos & .
(2n+ 7)/ " 2 2 272
9. If we rewrite (5) in the furm
)" _(=1)" (-1)"
(22) Z (?n—'f“ﬁ’_ Von+1 = p Z (2n+7)/ Uon+1—29 Z (2n + 1)! Uzp
n=0
we have, on using (20) and (21), that
~ (1) - 25 Zcos 8
(23) E ot 17 Von+1 2 sin 5 cos 5.
n=
Re-writing (6) as
=1 L, ()" ~ (1)
@) z ne i V201 =2 2 n+ 17 Y2nt2=P Z:a 2+ 1 Y2+t
n=0 n=
gives
(-1)" (=1)" (=1)"
(25) 22 (”+7}/ U2n+2“2 (”+7}I 2n+1 p Z (”+’}, U2ﬂ+1

Using (20) and (24) in (25) yields, on calculatlon,
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— (—1)"
(2n + 1)1
n=0
Summation Formulas — The Cosine

8 cos 2 —sin 2 cos & -

Uop+2 = 6—1ﬂ sin 2 2 2 2

(26)

10. If we parallel the work in paragraphs 5 to 9 for the cosine of the matrix X as defined in (12), we also have
the following results:

n+1 n+1
27) CosX = 1—X Z ((’2)), U2,.,+lqz ((Zul Usn-1
so that
R S sl ~ (g
(28) cos X = —X ,,2,:, T Uz,, +1g ZD T Usp-y
= n=

since, whenn =0,
-X(-1U, =
on using (1) and
IgU.1 = Iq-q" =/

on using (3).
=_-1-a-5_]_[p 8_ ﬂ-é]
(29) cos X [ 267" sin 5 sin 3 X cos 5 cos 8§ 'psin 7 sin 3 !
> (_”n+1 s
(30) 2% ol =28~ sm2 sm:?..
=
S =77 =5 Tpsin 2 sin & — cos 2 cos &
(31) q:_:_;) 120)7 Uop-1 =6 psin 5 sin 5 — cos 5 cos 3
(=)™’ 7}"” - )
(32) Y o) 2cos 5 cos 5
(1)1 = 5o sin 2 sin & +cos 2 cos &
(33) ‘,__B 077 Uspsy = 8 psin 5 sin 5 +cos 5 cos 3
n=
Chebychev Polynomials

11. As in Horadam [3], which deals among other things with Chebychev polynomials in relation to a certain gen-
eralized recurrence sequence, write

(34) x =cosf with p=2x and g = 1.

Then the U,, are precisely the Chebychev polynomials of the first kind, S, (x) Thus

(35) Un(2x, 1) = Spix) = s':ge >0,

where

(36) Sn+2 = 2%Sp+7—8p with Sy = 0 and S,

Likewise, the V/,, are the Chebychev polynomials of the second kind, ¢,(x) = 27, (x), where
(37) Tht2 = 2xTpe1—Tp with 7, =7 and T, = x

so that

(38) t, =2 and t, = 2x(=p).

Thus
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(39) Val2x, 1) = 2T,(x) = 2¢cosnf (n > 0).
Putting g = 7 in (20) and using (35) vlelds

= (=1)" sin (2n + 1)x
Z B+ 11 Y20t = Z (2n+7)' Son+1lx) = E e

(—1)" fel(2n+1)x g-i2n+1)x
) sz Z 2n+ 1)1 2i }

1 I R Tl P i
~sinX Z:(:,{ 2n+ 1)1 (20+1)! }

=1 {sin e —sin e"x}
2i sin x
ix ~-ix ix -ix
+ . _
T peosfte g &=t
2i sin x 2 2
7

isinx

i

]

cos (cos x) sin (i sin x)

cos (cos x)i sinh (sin x)

[0}

isinx
cos (cos x/ sinh (sin x)
sinx

Thus, we have

- (=1)"sin (2n + 1)x _ cos (cos x) sinh (sinx)
@0 Z: 2n + 1)! sin x sinx

Similarly, from (21), (30) and (32) and using (35) and (37), it can be shown that

(41) Z (2 + ”, cos (2n + 1)x = sin (cos x) cosh (sin x)
N (=1)™ 7 sin 2nx _ sin (cos xJ sinh (sin x)
42) 2—‘ (2n)!'sin x sin x
and
n+1
(43) Z (=1) (an?sznx = —cos (cos x) cosh (sin x)
n=0
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