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Recently T. V. Narayana presented two verifications of the sum 
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first derived by him in [1 ] , and by Kreweras in [2] , [3] . No direct proof of this formula'seems to have been given. 
It is the purpose of this note to present an analytic derivation of Eq. (1) and to suggest a method more generally 
applicable to summing series with binomial coefficients. The method involves the introduction of an integral repre-
sentation for at least one of the binomial coefficients. 

To begin with let us transform the series of Eq. (1) by using the integral representation 
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and interchange the orders of summation and integration (a step that can be justified in detail for values of u and v 
for which the original series converges). Then we can write 
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so that we need only find the sum of the simpler series 
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with x = u/t, y = v/t At this point we introduce the integral representation 
(5) (^" ? ) - i i^^ to. 
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where the contour will be chosen as the unit circle. We can again interchange orders of summation and integration 
to find 

r=1 s=1 z 

But the summation over s can be effected explicitly using the formula 
75 



76 A METHOD FOR THE EVALUATION OF CERTAIN SUMS [FEB. 

<7) E (7y) *' 
valid for \a\ < \. in this way we find 

(1-a)r+1 
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= z3L £ dz(1 + z) 

The quadratic form in z can be factored in the form 

(9) z^z[x-±^=-J) +^(z-z+)(z-zj, 

where 

(10) z+ = J- (1 - x - y ±yJ~(T~x - y)2 - 4xy ) . 

It is easily verified that the only root of Eq. (8) that lies in the unit circle as* or y tends to zero is z_, hence in the 
evaluation of the contour integral in Eq. (8), we need only be concerned about the poles at z =y/(1 - y) and atz = z«. 
The residue of the integrand at z = y/(1 - y) is found to be (1 -y)/y and the residue at z = z_ is 

(11) 1+Z„ = -(1 - y)(1 -X-v + hJ(1 -x-y)2-4xy ) 

(z_-z+)(z--j£--\ 2ys/ir=~x~vP-4xy 

If we add the contributions from the two poles we find 
(12) F(x,y) = (1-x-V + \/Jl-x~y)2 - 4xy) _ f = 1 - X - y - Jd - x - y)2 - 4xy 

2sJTT~ x - y)2 - 4xy 2sf(1 - x - y)2 - 4 xy 

If we now return to the integral over t, we find that S can be expressed as 
o© oo 

(13) S = f F{u/t, vMdt = f LzJLzJL^^^^^M dt . 
f f 2s/(t-u-v)2 -4uv 

Letting f - u - v = f , we can transform this last integral to 

(14) S = j Lz^&LzJsSL d£ . 

Finally, the substitution f = 2sfuv cosh 0 allows us to express S as 

e~edd = v^expT-cosh^ ( LzJL=JL\l 
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as found in the earlier references. 
Another set of identities that has been the subject of several recent notes, [4] - [ 6 ] , is the following 

N 

n=0 
(16) 

N 

These can both be derived in the same way as the identity of Eq. (1). In the expression for / I we note that the upper 
limit of the sum can be chosen to be °° if we use the convention that 

for/any positive integer. If we then use an integral representation for ( N
6_ ) we find 

(17) A = ± £ (-l)»(» + e-l)£ <±±llLdz = J^$Jl_=o . 
2m £~J \ n / J N+1-n 2w J ^N+1 

n=0 z z 

Similarly the series of B can be expressed as 

n=0 z 

where the contour can be suitably modified when a branch cut must be made. 
The preceeding analysis is of interest not for its derivation of known results but because it gives a method that can 

be tried on many similar problems. In cases where a summation in closed form is not possible, the integral represen-
tation can sometimes lead to asymptotic results. 
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