ON A THEOREM OF KRONECKER

MICHAEL WILLETT
University of North Carolina at Greenshoro 27412

Consider the r™ order homogeneous linear recursion
(1) Uptr = aflUptp-1 +*taup, ap # 0,
over a field F of characteristic p > 0. Let
V= { Vp } o CF
be a non-trivial solution of the recursion (1) and let
fix) = x"—apx"™ T —za, = ﬁ1 (x —ri)

/

be factored completely in its splitting field K where F c K. The results which follow remain valid if F is also the
complex field. The polynomial f(x) is called a characteristic polynomial for the sequence V. If ¢(n) is a sequence in
K defined on the non-negative integers/ then define the aperator £ by E¢(n) =¢(n + 1) for n € /. Recursion (1) may
therefore be written as

(2) fE)u, = 0.

The sequence V is said to satisfy a recursion of lower order if there exists a monic polynomial g(x) over F such that
degg(x) < deg fix)=r and g(E)v, = 0. There exists a unique monic polynomial of lowest degree which is a character-
istic polynomial for V, called the minimum polynomial for V/2/. The determination of the lowest order recursion
that a given solution of (2) satisfies is an essential step in the study of the periodicity properties of such solutions.
Define

Vn Vpt1 - VYntr-1
Vn+1  Vn+2
(3) D(n) = det | | . . , nel
Yn+r-1 Vn+2p-2

The purpose of this note is to present a new proof of a classic theorem of Kronecker [1, p. 199] which does not
depend on the notion of a fundamental solution set for (2). To this end Lemma 2 gives an explicit calculation of
the values of O(n).

Theorem 1.  (Kronecker) The solution V of (2) satisfies a recursion of lower order if and only if D(0) = 0,
First define the polynamials

(4) felx) = 11 (x—r;), 1T<k<r
i#k
We have
Lemma 1. flElvyy = 1R [T (E)vo], nel.
Proof. Note that f(x) = (x — ry Jfi (x) and since polynomials in £ commute as operators we have
(5) rfe(E)vy = Elfe(Elvp] = f(Epsy .

The result follows from a repeated application of (5). Q.E.D.
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Corollary 1. If f(E)vg = 0 then fx(Elvy = 0, n € 1.
The main result of this note is

r

Lemma 2. O(n) = (-1)* L [fi(E)vp], t=rlr—1)/2, nel,
=1

Prooﬁ (Induct on the order r of the recursion) If r=2 then

- Vn Vn+1 | _ 2 _ 2
O(n) = det [Vn+7 Vn+2] = UpVgt2 = Vips = —Visq +Vnllry # ralpseq = riravn]
~Wpt1 = r1Vnlvpsg —ravp) = —[f2(E)vpl [f1(E)v,] .
Therefore the lemma is true for r = 2. Assume the lemma true for all recursions of order less thanr > 2, Since

i

r
f1(E)vp = Vn+r-1+z CiVntr-1
=2

for some ¢; € K, we have that ¢; times the r + 7 — / row of 0(n) added to the ™ row for 2 <7 <r gives

Vn Vn+1 ** Vntr-1
Vn+1
Din) = det
Vptr-2
F1(ENy F1(E)vpty - F1(ENVpipq
which, by Lemma 1, gives . -
R Vnt1  Vindr-1 |
vnti
Din) = [f1(E)v,] det
Vntr-2 .
_ 7 r1 T

Multiplying column / by —r, and adding to column/+ 7 for 7 </ <r— 1, we have

Wn “es Wptp-2
(6) D(n) = (=1)"1[f1(E)v,] det]  wner «
Wntr-2 * Wn+2p-4
for
Wn = Vp+1—r1Vn, nel,

where the matrix appearing in (6) is 7 — 7 square. Note that
f1(E)w, = HE)v, = G, nel,
so0 that f7 (x/ is a characteristic polynomial for the sequence { Wy } Let

gelx) = I (x=ri), 2 <k <.
i#1,k

Then, by the induction hypothesis, Eq. (6) becomes
r !
D(n) = (~1)"" [f1(E)vn ] (~1) 1272 1L gi(Ewn = (- 101112 54 (E)v ] 1L [7(Elunl .
= =,
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Therefore mathematical induction yields the result. Q.E.D.
An immediate consequence of Corollary 1 and Lemma 2 is

Corollary 2. Either D(n) is identically zero or never zero.
Zierler proves the following [2].

Lemma 3. Let f(x) be a characteristic polynomial over the field F for the sequence
v={w|cFk V#uo,

and let g(x) be the minimum polynemial for V. Then
(i) glx) | flx),
(ii) h(xJg(x) is also a characteristic polynomial for V/, where 1(x) is any monic polynomial over F.

To complete the proof of Theorem 1 we note that Lemma 3 implies that V satisfies a lower order recursion if and
only if some fx (x) as defined in (4) is a characteristic polynomial for V. But then Lemma 2 and Corollary 2 imply
that V satisfies a lower order recursion if and only if £(0) = 0.
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A FIBONACCI PLEASANTRY

LEON BANKOFF
Los Angeles, California 90048

In the Fibonacci sequence £, =0, F, =1, -+, F = Fy_1 + F-2, list the sums Fj, + n in ascending order of 7 and
note the second differences. Do the same with F,, — n.

0+ 0= 0 0- 0= 0
> 2 > 0
1+ 1= 2 >-1 1—-1= 0 > -1
> 1 > -1
1+ 2= 3 > 1 1- 2= -1 > 1
> 2 > 0
2+ 3= 5 > 0 2— 3= -1 > 0
> 2 > 0
3+ 4= 17 > 1 3— 4= -1 > 1
> 3 > 1
5+ 5= 10 > 1 5— 5= 10 > 1
> 4 > 2
8+ 6= 14 > 2 8— 6= 2 > 2
> 6 > 4
13+ 7= 20 > 3 13— 7= 6 > 3
> 9 > 7
21+ 8= 29 > 5 21- 8= 13 > 5
> 14 > 12
34+ 9= 43 > 8 34— 9= 25 > 8
> 22 > 20
55+10 = 65 > 13 55—-10 = 45 >13

[Continued on page 41.]



