ON A THEOREM OF KRONECKER

MICHAEL WLLETT

University of North Carolina at Greenisboro 27412

Consider the $r^{t h}$ order homogeneous linear recursion
(1) $u_{n+r}=a_{1} u_{n+r-1}+\ldots+a_{r} u_{n}, a_{r} \neq 0$,
over a field F of characteristic $p>0$. Let

$$
V=\left\{v_{n}\right\}_{o}^{\infty} \subseteq F
$$

be a non-trivial solution of the recursion (1) and let

$$
f(x) \equiv x^{r}-a_{1} x^{r-1}-\cdots-a_{r}=\prod_{i=1}^{r}\left(x-r_{i}\right)
$$

be factored completely in its splitting field K where $F \subseteq K$. The results which follow remain valid if F is also the complex field. The polynomial $f(x)$ is called a characteristic polynomial for the sequence V. If $\phi(n)$ is a sequence in K defined on the non-negative integers/ then define the operator E by $E \phi(n) \equiv \phi(n+1)$ for $n \in I$. Recursion (1) may therefore be written as (2)

$$
f(E) u_{n} \equiv 0 .
$$

The sequence V is said to satisfy a recursion of lower order if there exists a monic polynomial $g(x)$ over F such that $\operatorname{deg} g(x)<\operatorname{deg} f(x)=r$ and $g(E) v_{n} \equiv 0$. There exists a unique monic polynomial of lowest degree which is a characteristic polynomial for V, called the minimum polynomial for V [2]. The determination of the lowest order recursion that a given solution of (2) satisfies is an essential step in the study of the periodicity properties of such solutions. Define
(3)

$$
D(n)=\operatorname{det}\left[\begin{array}{cccc}
v_{n} & v_{n+1} & \ldots & v_{n+r-1} \\
v_{n+1} & v_{n+2} & & \\
\vdots & \cdots & & \vdots \\
v_{n+r-1} & \cdots & & v_{n+2 r-2}
\end{array}\right], n \in 1 .
$$

The purpose of this note is to present a new proof of a classic theorem of Kronecker [1, p. 199] which does not depend on the notion of a fundamental solution set for (2). To this end Lemma 2 gives an explicit calculation of the values of $D(n)$.
Theorem 1. (Kronecker) The solution V of (2) satisfies a recursion of lower order if and only if $D(0)=0$. First define the polynomials
(4)

We have
Lemma 1.

$$
f_{k}(x)=\prod_{i \neq k}\left(x-r_{i}\right), \quad 1 \leqslant k \leqslant r .
$$

Proof. Note that $f(x)=\left(x-r_{k}\right) f_{k}(x)$ and since polynomials in E commute as operators we have (5)

$$
r_{k} f_{k}(E) v_{n}=E\left[f_{k}(E) v_{n}\right]=f_{k}(E) v_{n+1} .
$$

The result follows from a repeated application of (5). Q.E.D.

Corollary 1. If $f_{k}(E) v_{0}=0$ then $f_{k}(E) v_{n}=0, n \in I$.
The main result of this note is
Lemma 2. $\quad D(n)=(-1)^{t} \prod_{i=1}^{r}\left[f_{i}(E) v_{n}\right], \quad t=r(r-1) / 2, \quad n \in 1$.
Proof. (Induct on the order r of the recursion) If $r=2$ then

$$
\begin{aligned}
D(n)=\operatorname{det}\left[\begin{array}{ll}
v_{n} & v_{n+1} \\
v_{n+1} & v_{n+2}
\end{array}\right] & =v_{n} v_{n+2}-v_{n+1}^{2}=-v_{n+1}^{2}+v_{n}\left[\left(r_{1}+r_{2}\right) v_{n+1}-r_{1} r_{2} v_{n}\right] \\
& =-\left(v_{n+1}-r_{1} v_{n}\right)\left(v_{n+1}-r_{2} v_{n}\right)=-\left[f_{2}(E) v_{n}\right]\left[f_{1}(E) v_{n}\right]
\end{aligned}
$$

Therefore the lemma is true for $r=2$. Assume the lemma true for all recursions of order less than $r>2$. Since

$$
f_{1}(E) v_{n}=v_{n+r-1}+\sum_{i=2}^{r} c_{i} v_{n+r-i}
$$

for some $c_{i} \in K$, we have that c_{i} times the $r+1$ - i row of $D(n)$ added to the $r^{\text {th }}$ row for $2 \leqslant i \leqslant r$ gives

$$
D(n)=\operatorname{det}\left[\begin{array}{cccc}
v_{n} & v_{n+1} & \cdots & v_{n+r-1} \\
v_{n+1} & & & \\
\vdots & \vdots & & \vdots \\
v_{n+r-2} & & & \\
f_{1}(E) v_{n} & f_{1}(E) v_{n+1} & \cdots f_{1}(E) v_{n+r-1}
\end{array}\right]
$$

which, by Lemma 1, gives

$$
D(n)=\left[f_{1}(E) v_{n}\right] \operatorname{det}\left[\begin{array}{cccc}
v_{n} & v_{n+1} & \cdots & v_{n+r-1} \\
v_{n+1} & & & \\
\vdots & \vdots & & \vdots \\
v_{n+r-2} & & & r_{1}-1
\end{array}\right]
$$

Multiplying column i by $-r_{1}$ and adding to column $i+1$ for $1 \leqslant i \leqslant r-1$, we have
(6)

$$
D(n)=(-1)^{r-1}\left[f_{1}(E) v_{n}\right] \operatorname{det}\left[\begin{array}{ccc}
w_{n} & \cdots & w_{n+r-2} \\
w_{n+1} & \cdots & \vdots \\
\vdots & & \vdots \\
w_{n+r-2} & \cdots & w_{n+2 r-4}
\end{array}\right]
$$

for

$$
w_{n} \equiv v_{n+1}-r_{1} v_{n}, \quad n \in I
$$

where the matrix appearing in (6) is $r-1$ square. Note that

$$
f_{1}(E) w_{n}=f(E) v_{n}=0, \quad n \in I
$$

so that $f_{1}(x)$ is a characteristic polynomial for the sequence $\left\{w_{n}\right\}$. Let

$$
g_{k}(x) \equiv \prod_{i \neq 1, k}\left(x-r_{i}\right), \quad 2 \leqslant k \leqslant r
$$

Then, by the induction hypothesis, Eq. (6) becomes

$$
D(n)=(-1)^{r-1}\left[f_{1}(E) v_{n}\right](-1)^{(r-1)(r-2) / 2} \prod_{i=2}^{r}\left[g_{i}(E) w_{n}\right]=(-1)^{r(r-1) / 2}\left[f_{1}(E) v_{n}\right] \prod_{i=2}^{r}\left[f_{i}(E) v_{n}\right] .
$$

Therefore mathematical induction yields the result. Q.E.D.
An immediate consequence of Corollary 1 and Lemma 2 is
Corollary 2. Either $D(n)$ is identically zero or never zero.
Zierler proves the following [2].
Lemma 3. Let $f(x)$ be a characteristic polynomial over the field F for the sequence

$$
v=\left\{v_{n}\right\} \subseteq F, \quad V \not \equiv 0
$$

and let $g(x)$ be the minimum polynomial for V. Then
(i)
$g(x) \mid f(x)$,
(ii) $h(x) g(x)$ is also a characteristic polynomial for V, where $h(x)$ is any monic polynomial over F.

To complete the proof of Theorem 1 we note that Lemma 3 implies that V satisfies a lower order recursion if and only if some $f_{k}(x)$ as defined in (4) is a characteristic polynomial for V. But then Lemma 2 and Corollary 2 imply that V satisfies a lower order recursion if and only if $D(0)=0$.

REFERENCES

1. M. Hall, "An Isomorphism Between Linear Recurring Sequences and Algebraic Rings," Amer. Math. Monthly, 44 (1938), pp. 196-217.
2. N. Zierler, "Linear Recurring Sequences," J. Soc. Indust. Appl. Math., 7 (1959), pp. 31-48.

大为

A FIBONACCI PLEASANTRY

LEON BANKOFF
 Los Angeles, California 90048

In the Fibonacci sequence $F_{0}=0, F_{1}=1, \ldots, F_{n}=F_{n-1}+F_{n-2}$, list the sums $F_{n}+n$ in ascending order of n and note the second differences. Do the same with $F_{n}-n$.

$$
\begin{aligned}
0+0 & =0 \\
1+1 & =2
\end{aligned}>2>-1 .
$$

[Continued on page 41.]

