ON CONTINUED FRACTION EXPANSIONS WHOSE ELEMENTS ARE ALL ONES

GREGORY WULCZYN Bucknell University, Lewisburg, Pennsylvania 17837

1. EVEN PERIOD EXPANSIONS

1. NUMBER THEORY REVIEW. Here is an example of an even continued fraction expansion of \sqrt{D} , D a non-square integer, with D=13.

$$\sqrt{13} = 3 + \sqrt{13} - 3 = 3 + \frac{\sqrt{13} + 3}{4}$$

$$\frac{\sqrt{13} + 3}{4} = 1 + \frac{\sqrt{13} - 1}{4} = 1 + \frac{\sqrt{13} + 1}{3}$$

$$\frac{\sqrt{13} + 1}{3} = 1 + \frac{\sqrt{13} - 2}{3} = 1 + \frac{\sqrt{13} + 2}{3}$$

$$\frac{\sqrt{13} + 2}{3} = 1 + \frac{\sqrt{13} - 1}{3} = 1 + \frac{\sqrt{13} + 1}{4}$$

$$\frac{\sqrt{13} + 1}{4} = 1 + \frac{\sqrt{13} - 3}{4} = 1 + \frac{\sqrt{13} + 1}{1}$$

Hence $\sqrt{13}$ = < 3, 1, 1, 1, 6 > and the solution of the Pellian equations $x^2 - Dy^2 = d_i$ can be found from the table.

continued fraction elements
$$c_i$$
 3 1 1 1 1 6 signed denominators d_i -4 3 -3 4 -1 p convergents p_i 3 $\frac{4}{1}$ $\frac{7}{2}$ 11 18 q convergents q_i 1 $\frac{1}{1}$ $\frac{2}{2}$ 3 5

The q convergents are the Fibonacci numbers. The primitive solution of $x^2 - 13y^2 = -1$ is picked up from the half period. Thus

$$y = 1^2 + 2^2 = 5;$$
 $x = 4 \times 1 + 7 \times 2 = 18.$

In general for period 2r,

$$y = q_r^2 + q_{r-1}^2 = q_{2r-1};$$
 $x = p_{r-1}q_{r-1} + p_rq_r = q_{2r-1}.$

Also the representation of D as the sum of two squares can be found as

$$D = d_r^2 + (D - d_r^2) = d_r^2 + t^2,$$

where d_r is the middle denominator. Thus $13 = 3^2 + 2^2$. Finally for D = 5 (modulo 8), since a signed denominator is ± 4 , the convergents under the -4 column are the coefficients of the cubic root of unity

$$\frac{3+\sqrt{13}}{2}$$

in the field $(1,\sqrt{13})$.

Since the period is even the x_0 of the quadratic congruence $x_0^2 \equiv -1 \pmod{13}$ is given by $x_0 \equiv x \equiv 18 \equiv 5 \pmod{13}$.

2. FIBONACCI RELATIONS TO BE USED.

(a)
$$(F_n, F_{n+1}) = 1.$$

(b)
$$F_{2n}^2 + 1 = F_{2n-1}F_{2n+1}$$

(c)
$$F_n^2 + F_{n+1}^2 = F_{2n+1}.$$

It may be noted that no odd Fibonacci number is ever divisible by a prime of the form p = 4s + 3 since from (b) $x^2 \equiv -1 \pmod{p}$ which is impossible.

3. EVEN VARIABLE DIFFERENCE TABLE: $D = m^2 + k$

The supposition $(mF_{2n+1} + F_{2n})^2 - F_{2n+1}^2(m^2 + k) = -1$ leads to

$$2mF_{2n}F_{2n+1} + F_{2n}^2 - kF_{2n+1}^2 = -1$$

$$2mF_{2n}F_{2n+1} - kF_{2n+1}^2 = -(F_{2n}^2 + 1) = -F_{2n-1}F_{2n+1}$$

$$2mF_{2n} - kF_{2n+1} = F_{2n-1}$$

Recalling that $(F_n, F_{n+1}) = 1$ and that F_{3n} is always even this linear diophantine equation will have an infinite number of positive integer solutions for m and k unless $2n + 1 \equiv 0 \pmod{3}$.

Example.

e.
$$D = m^2 + k$$
, $\sqrt{D} = \langle m, 1, 1, 1, 1, 1, 1, 2m \rangle$
 $(13m + 8)^2 - 169(m^2 + k) = -1$
 $16m - 13k = -5$, $k = m + \frac{3m + 5}{13}$
 $m = 7$, $k = 7 + 2 = 9$, $D = 58$, $\sqrt{58} = \langle 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2m \rangle$

has primitive solution

$$x = 13m + 8 = 99$$
, $y = 13$.

$$m = 13 + 7 = 20, \quad k = 20 + 5 = 25, \quad D = 425, \quad \sqrt{425} = <20, 1, 1, 1, 1, 1, 1, 1, 1, 40>, \quad x^2 - 425y^2 = -1$$

has primitive solution

$$x = 13m + 8 = 268$$
. $v = 13$.

In general if

$$D = 169m^2 - 140m + 29$$
, $\sqrt{D} = \langle 13m - 6, 1, 1, 1, 1, 1, 1, 26m - 12 \rangle$

and the primitive solution of $x^2 - Dy^2 = -1$ is given by x = 169m - 70, y = 13.

II. ODD PERIOD EXPANSIONS

4. NUMBER THEORY REVIEW. Let D = 135

$$\sqrt{135} = 11 + \sqrt{135} - 11 = 11 + \frac{\sqrt{135} + 11}{14}$$

$$\frac{\sqrt{135} + 11}{14} = 1 + \frac{\sqrt{135} - 3}{14} = 1 + \frac{\sqrt{135} + 3}{9}$$

$$\frac{\sqrt{135} + 3}{9} = 1 + \frac{\sqrt{135} - 6}{9} = 1 + \frac{\sqrt{135} + 6}{11}$$

$$\frac{\sqrt{135} + 6}{11} = 1 + \frac{\sqrt{135} - 5}{11} = 1 + \frac{\sqrt{135} + 5}{10}$$

[continued on next page.]

$$\frac{\sqrt{135} + 5}{10} = 1 + \frac{\sqrt{135} - 5}{10} = 1 + \frac{\sqrt{135} + 5}{11}$$

$$\frac{\sqrt{135} + 5}{11} = 1 + \frac{\sqrt{135} - 6}{11} = 1 + \frac{\sqrt{135} + 6}{9}$$

$$\frac{\sqrt{135} + 6}{9} = 1 + \frac{\sqrt{135} - 3}{9} = 1 + \frac{\sqrt{135} + 3}{14}$$

$$\frac{\sqrt{135} + 3}{14} = 1 + \frac{\sqrt{135} - 11}{14} = 1 + \sqrt{135} + 11$$

$$\sqrt{135} + 11 = 22$$

$$\sqrt{135} = \langle 11, 1, 1, 1, 1, 1, 1, 22 \rangle$$

The solutions of the Pellian equations $x^2 - Dy^2 = d_i$ can be found from the table.

The primitive solution of $x^2-135y^2=1$ is given by $x=p_8=244$, $y=q_8=21$. It can also be picked up from the half period. If the period is 2r+1, $y=(q_r+q_{r-2})q_{r-1}$. Here

$$y = 3(2 + 5) = 21,$$

$$x = q_{r-1}p_{r-2} + q_rp_{r-1}$$

Here $x = 3 \times 23 + 5 \times 35 = 244$.

5. FIBONACCI IDENTITIES TO BE USED.

(a)
$$(F_{r-2} + F_r)F_{r-1} = F_{2r-2}$$

(b)
$$F_{2n-1}^2 - 1 = F_{2n}F_{2n-2}$$

6. ODD VARIABLE DIFFERENCE TABLE: $D = m^2 + k$

The supposition $(mF_{2r} + F_{2r-1})^2 - F_{2r}^2(m+k) = 1$ leads to

$$2mF_{2r}F_{2r-1} + F_{2r-1}^2 - kF_{2r}^2 = 1$$

$$2mF_{2r}F_{2r-1} - F_{2r}^2k = -(F_{2r-1}^2 - 1) = -F_{2r}F_{2r-2}$$

$$2mF_{2r-1} - kF_{2r} = -F_{2r-2}$$

Since $(F_{2r}, F_{2r-1}) = 1$, this linear diophantine equation will have an infinite number of positive integer solutions unless r is a multiple of 3. When r = 3t, F_{2r} is even, but F_{2r-2} is odd.

Example:
$$D = m^2 + k$$
, $\sqrt{D} = \langle m, 1, 1, 1, 2m \rangle (3m + 2)^2 - 9(m^2 + k) = 1$
 $4m - 3k = -1$, $k = m + \frac{m+1}{3}$
 $m = 2$, $k = 3$, $D = 7$, $\sqrt{7} = \langle 2, 1, 1, 1, 4 \rangle$.

 $x^2 - 7y^2 = 1$ has solution $x = 3 \times 2 + 2 = 8$ y = 3.

Since
$$m = 2 + 3 = 5$$
, $k = 5 + 2 = 7$, $D = 32$ follows from $k = m + \frac{m+1}{3}$.

 $x^2 - 32y^2 = 1$ has primitive solution $x = 3 \times 5 + 2 = 17$, y = 3. In general,

$$D = 9m^2 - 2m$$
, $\sqrt{D} = \langle 3m - 1, 1, 1, 1, 6m - 2 \rangle$.

The primitive solution of $x^2 - Dy^2 = 1$ is tiven by x = 9m - 1, y = 3.

7.
$$D = m^2 + k$$
, $2mF_r - kF_{r+1} = -F_{r-1}$

$$\sqrt{D} = m + \sqrt{D} - m = m + \frac{\sqrt{D} + m}{k}$$

$$\frac{\sqrt{D} + m}{k} = 1 + \frac{\sqrt{D} - (k - m)}{k} = 1 + \frac{\sqrt{D} + k - m}{2m + 1 - k}$$

$$\frac{\sqrt{D} + k - m}{2m + 1 - k} = 1 + \frac{\sqrt{D} - (3m + 1 - 2k)}{2m + 1 - k} = 1 + \frac{\sqrt{D} + 3m + 1 - 2k}{4k - 4m - 1}$$

$$\frac{\sqrt{D} + 3m + 1 - 2k}{4k - 4m - 1} = 1 + \frac{\sqrt{D} - (6k - 7m - 2)}{4k - 4m + 1} = 1 + \frac{\sqrt{D} + 6k - 7m - 2}{12m - 9k + 4}$$

$$\frac{\sqrt{D} + F_s F_{s-1} k - (1 + 2F_1 F_2 + \dots + 2F_{s-2} F_{s-1}) m - (F_1^2 + F_2^2 + \dots + F_{s-2}^2)}{2 m F_s F_{s-1} - k F_s^2 + F_{s-1}^2}$$

$$= 1 + \frac{\sqrt{D} - [(1 + 2F_1F_2 + \dots + 2F_{s-1}F_s \ m) - F_sF_{s+1}k + (F_1^2F_2^2 + \dots + F_{s-1})]}{2mF_sF_{s-1} - kF_s^2 + F_{s-1}^2}$$

$$= 1 + \frac{D + (A)}{kF_{s+1}^2 - 2mF_sF_{s+1} - F_s^2}.$$

For this last assumption to be valid,

$$(2mF_sF_{s-1}-kF_s^2+F_{s-1}^2)(kF_{s+1}^2-2mF_{s+1}F_s-F_s^2) \, \equiv \, m^2+k-(\mathbb{A})^2 \, .$$

This identity will be proved by equating coefficients:

1. Coefficient of $-m^2$

$$4F_s^2F_{s-1}F_{s+1} = 4F_s^2[F_s^2 + (-1)^s] = 4F_s^4 + 4(-1)^sF_s^2 = \frac{4}{25}\left(L_{4s} + L_{2s} - 4\right) = \left[F_{s+2}F_s - F_{s+1}F_{s-2}\right]^2 - 1.$$

2. Coefficient of $-k^2$

$$F_s^2 F_{s+1}^2 = F_s^2 F_{s+1}^2$$
.

3. Constant term:

$$-F_s^2 F_{s-1}^2 = -(F_1^2 + F_2^2 + \dots + F_{s-1}^2)^2$$
.

4. Coefficient of 2mk

$$F_{s-1}F_sF_{s+1}^2 + F_s^3F_{s+1} = F_sF_{s+1}(F_{s-1}F_{s+1} + F_s^2) = [2L_{2s} + (-1)^s]F_sF_{s+1}$$

$$F_sF_{s+1}(1 + 2F_1F_2 + \dots + 2F_{s-1}F_s = F_sF_{s+1}(F_{s+2}F_s - F_{s+1}F_{s-2}) = [2L_{2s} + (-1)^s]F_sF_{s+1}$$

5. Coefficient of k.

$$2F_sF_{s+1}(F_1^2+F_2^2+\cdots+F_{s-1}^2)+1=2F_s^2F_{s-1}F_{s+1}+1=1+2F_s^2[F_s^2+(-1)^s]=2F_s^4+2F_s^2(-1)^s+1$$

$$F_{s-1}^2F_{s+1}^2+F_s^4=F_s^4+[F_s^2+(-1)^s]^2=2F_s^4+2(-1)^sF_s^2+1\;.$$

6. Coefficient of -2m

$$\begin{split} F_s^3 F_{s-1} + F_{s-1}^2 F_s F_{s+1} &= F_{s-1} F_s [F_s^2 + F_{s-1} F_{s+1}] = F_{s-1} F_s [F_s (F_{s+2} - F_{s+1}) + F_{s-1} F_{s+1}] \\ &= F_{s-1} F_s [F_s F_{s+2} - F_{s+1} (F_s - F_{s-1})] = F_{s-1} F_s (F_s F_{s+2} - F_{s+1} F_{s-2}). \\ (F_1^2 + F_2^2 + \dots + F_{s-1}^2) (1 + 2F_1 F_2 + 2F_s F_3 + \dots + 2F_{s-1} F_s = F_{s-1} F_s [F_s F_{s+2} - F_{s+1} F_{s-2}] \end{split}$$

In proving this identity the following Fibonacci identities were used:

(a)
$$1 + 2F_1F_2 + \dots + 2F_{s-1}F_s = F_sF_{s+2} - F_{s+1}F_{s-2}$$

(b)
$$F_1^2 + F_2^2 + \dots + F_s^2 = F_{s-1}F_s$$

(c)
$$F_{s-1}F_{s+1} = F_s^2 + (-1)^s .$$

A MORE GENERAL FIBONACCI MULTIGRADE

DONALD CROSS St. Luke's College, Exeter, England

In a recent article I gave examples of multigrades based on Fibonacci series in which

$$F_{n+2} = F_{n+1} + F_n .$$

Here I first give a more general multigrade for series in which

$$F_{n+2} = yF_{n+1} + xF_n.$$

Consider

1 3 7 17 47 (where
$$x = 1, y = 2$$
).

By inspection we notice that

$$1^{m} + 3^{m} + 3^{m} + 7^{m} = 0^{m} + 4^{m} + 4^{m} + 6^{m}$$

 $3^{m} + 7^{m} + 7^{m} + 17^{m} = 0^{m} + 10^{m} + 10^{m} + 14^{m}$, etc.
(where $m = 1, 2$).

We can look at other series of a like kind:

1 3 10 33 109 (where
$$x = 1$$
, $y = 3$).

Here

$$1^{m} + 3^{m} + 3^{m} + 3^{m} + 10^{m} + 10^{m} = 0^{m} + 0^{m} + 7^{m} + 7^{m} + 7^{m} + 9^{m}$$

 $3^{m} + 10^{m} + 10^{m} + 10^{m} + 33^{m} + 33^{m} = 0^{m} + 0^{m} + 23^{m} + 23^{m} + 23^{m} + 30^{m}$, etc.
(where $m = 1, 2$)
1 3 11 39 139 (where $x = 2, y = 3$).

Here

$$1^{m} + 1^{m} + 3^{m} + 3^{m} + 3^{m} + 11^{m} + 11^{m} + 11^{m} = 0^{m} + 0^{m} + 0^{m} + 8^{m} + 8^{m} + 10^{m} + 10^{m}$$

 $3^{m} + 3^{m} + 11^{m} + 11^{m} + 11^{m} + 39^{m} + 39^{m} + 39^{m} = 0^{m} + 0^{m} + 0^{m} + 28^{m} + 28^{m} + 28^{m} + 36^{m} + 36^{m}, \text{ etc.}$
(where $m = 1, 2$)

The general series

$$a$$
 b $ax + by$ $bx + axy + by^2$

gives

$$x(a)^m + y(b)^m + (x + y - 2)(ax + by)^m = (x + y - 2)0^m + y(ax + by - b)^m + x(ax + by - a)^m$$

(where $m = 1, 2$).

Continued on page 66.