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f. EVEN PERIOD EXPANSIONS 

1. NUMBER THEORY REVIEW. Here is an example of an even continued fraction expansion of >JD, D a non-
square integer, with D - 13. 

sj~13 = 3 + ^13 - 3 * 3+^j-3-

J13 + 3 s 1 + y /Tj- 7 ^ ; + J13 + 1 

JT3+1 = 1 , J13-2 M 1 + JJ3+2 
3 3 3 

J13 + 2 s 1+ Jl3- 1 - . J13+1 
3 ' 3 ' 4 

J13+1 _ - , JT3-3 = 7 . Jl3+1 
4 " 4 ' 1 

Hence >/13 = < 3 ,1 , 1, 1,1, 6 > and the solution of the Pellian equationsx2 - Dy2 = d; can be found from the 
table. 

continued fraction elements c; 
signed denominators dj 
p convergents/7/ 
q convergents #/ 

3 
- 4 

3 
1 

1 
3 
4 
1 

1 
-3 

7 
2 

1 
4 

11 
3 

1 
-1 
18 
5 

The q convergents are the Fibonacci numbers. The primitive solution of A-2 - 13y2 s - 1 is picked up from the 
half period. Thus 

y = P+2* = 5; x = 4x1 + 7x2 = 18. 
In general for period 2r, 

y = qr + q^7 = q2r-i; x = p^q^j +prqr =* q2r-1 • 
Also the representation of D as the sum of two squares can be found as 

D = d2
r+(D-d2) = d2+t2 , 

where dr is the middle denominator. Thus 13 = 32 + 2 2 . Finally for Z7 = 5 (modulo 8), since a signed denominator is 
±4, the convergents under the - 4 column are the coefficients of the cubic root of unity 

3 + J13 
_ 2 

in the field (1,y/13). 
Sincethe period is even the x0 of the quadratic congruence x\ = - 1 (mod 13) is given by x0 = X E = 1 8 = = 5 (modulo 

13). 
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2. FIBONACCI RELATIONS TO BE USED. 
(a) (F„, Fn+1) = 1. 

(b) F%n+1 = F2„-iF2n+i 

fc) F2
n + F

2
n+1 = F2nH. 

It may be noted that no odd Fibonacci number is ever divisible by a prime of the form p = % + 3 since from (b) 
x2 = - 1 (mod p) which is impossible. 

3. EVEN VARIABLE DIFFERENCE TABLE: Z? = /??2 * k 
2n ones n > 1 

m 1 1 1 1 2m 
_k — .—. _ _ _ 1 

m m +1 2m+ 1 mF2n+<i + F2n 
1 1 2 - F2n+1 

The supposition (mF2n+i + F2n)
2- F^n+i(m2 + k) = — ̂  leads to 

2mF2nF2n+1 + F2n~kF2n+t = ~* 

2mF2nF2n+1-kF2
2n+1 = -(F2

2n+1) = -F2n-iF2„+i 

2mF2n-kF2n+1 = F2n„7 

Recalling that (Fn, Fn+i) = 1 and that F$n is always even this linear diophantine equation will have an infinite num-
ber of positive integer solutions for m and k unless In +_1 = 0 (mod 3). 

Example. D = m2 + k, sjD = <m, 1, 1, 1, 1, 1,1, 2m > 

(13m+8)2 - 169(m2+k) = -1 

16m - 13k = -5, k = m+^j^-

m = 7, k = 7 + 2 = 9, D = 58, ^/58 = < 7,1, 1, 1,1, 1, 1, 14 >, x2 - 58y = - 1 
has primitive solution 

x = 13m+8 = 99, y = 13. 

m= 13+7 = 20, k = 20+5 = 25, D = 425, sj425 = < 20, 1, 1,1, 1, 1, 1, 40 >, x2 - 425y2 = -1 

has primitive solution 
x = 13m + 8 = 268, y = 13. 

In general if __ 
D = 169m2 - 140m+29, sjD = < 13m - 6, 1, 1, 1, 1, 1, 1, 26m - 12> 

and the primitive solution of x2 - Dy2 = - 1 is given b y x = 169m - 70, y = 13. 

I I . ODD PERIOD EXPANSIONS 
4. NUMBER THEORY REVIEW. Let D = 135 

V135" = 1 1 + v i 3 i T - 1 1 = 11+ V 1 3 5 ^ 1 1 

V135+11 = 1 + 7l35"-~3 = « 7135"+ 3 
14 14 9 

s/135 + 3 = - V135-.6. = « , V135 + 6 
9 9 11 

x/135 + 6 = , , j m - 5 . «' V135 + 5 
11 11. . 10 

[continued on next page.] 



20 ON CONTINUED FRACTION EXPANSIONS WHOSE ELEMENTS ARE ALL ONES [FEB. 

V135 + 5 = < , V 1 3 5 - 5 _ 1 , x/135 + 5 
10 10 " 11 

N/135 + 5 _ 1 + N / 1 3 5 - 6 = , . .N/135 + 6 
11 11 9 

x/135 + 6 = 1 + V 1 3 5 - 3 _ 1 , x/135 + 3 
9 9 14 

JM±1 = 1 + V 1 3 5 - H = i + x / 1 3 5 + 1 1 
14 14 v 

V135+11 = 22 
V135"= < 11,1, 1,1,1, 1f 1,1, 22 > . 

The solutions of the Pellian equations x2 - Dy2 = tf/can be found from the table. 

c. f. elements 
signed denominators 
p convergents 
q convergents 

£ / 

Pi 
Qi 

11 
- 1 4 

11 
1 

1 
9 

12 
1 

1 
- 1 1 

23 
2 

1 
10 
35 

3 

1 
- 1 1 

58 
5 

1 
9 

93 
8 

1 
-14 
151 

13 

1 
1 

244 
21 

22 

The primitive solution of x2 - 135y2 = 1 is given b y * = /?8 =244, y^q^ =21. It can also be picked up from the 
half period. If the period \s2r+ 1, y = (qr + qr-2kr-l • ^ere 

/ = 3(2 + 5) = 21, 

X = q^TP^+QrPr-l-
Herex = 3 x 23 + 5 x 35 = 244. 

5. FIBONACCMDENTITIESTO BE USED. 

(a) 

(b) 
(Fr-2 + Fr)Fr-1 - F2r-2 

F2nF2n-2 Fli-1-1 

6. ODD VARIABLE DIFFERENCE TABLE \D»m2+k 

2r- 1 ones m 1 
-k — — ~ — 
m m + 1 2m + 1 
1 1 2 

2 r2 , 

1 2m 
1 
mF2r + F2r-1 
F2t 

The supposition (mF2r+ F2r-V' - F2r^m + k) = 1 leads to 

2mF2rF2r-1 + F22r-1-kF2r= 1 

2mF2rF2r^-F2
2rk = -(F2

2r^ 1) - -F2rF2r-2 

2mF2r„1 - kF2r = -F2r~2 

Since (F2r, F2r-i) = 1, this linear diophantine equation will have an infinite number of positive integer solutions 
unless r is a multiple of 3. When r = 3t, F2r is even, but F2r„2 *s odd. 

Example: D = m2 + k, >JB = <m,\, 1, \,lm>(3m + 2)2 -9(m2+k) = 1 

4m-3k -1, k = m + m+ 1 

m 3, D = 7, sjl = < 2 , 1 , 1 , 1 , 4 > . 
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x2 - 7y2 = 1 has solution x = 3x2 + 2 = 8 y = 3. 

Since /?? = 2 + 3 = 5, £ = 5 + 2 = 7, # = 32 follows from k*m * ^ j - ^ . 
x2 - 32j/2 = 1 has primitive solution* = 3 x 5 + 2 = 17, y = 3. In general, 

0 = 9m2-2m, VZ? = <3m- 1, 1, 1, 1,6m-2>. 

The primitive solution of x2 - Dy2 = 1 is tiven by x = 9m - 1, y = 3. 
7. D = m2+k, 2mFr-kFr+1 = - / > . / 

JO = m + sj'D-m = m + ^ - ^ 
k 

jD+m s - + jD-(k-m) = - ^ jD + k-m 
k k 2m+1-k 

slD + k-m = 1 + >jD-(3m+1- 2k) = ; + JD + 3m + 1 - 2 k 
2m+1-k 2m+1-k 4k-4m-1 

jD + 3m+1-2k = * + <JB-(6k-7m-2) s - + JP + 6k-7m-2 
4k-4m-1 4k-4m+1 12m-9k + 4 

s/~D + FsFs-1k-(1 + 2F7F2+... + 2Fs„2Fs„1)m - (F%+ F§ + - + FJ2) 

2mFsFs-1-kF*+Fi1 

1 + 

(A) 
sjD-[(1+2F1F2 + - + 2Fs_1FsmhFsFs+1k + (F:jF%+:.+ Fs„1)] 

2mFsFs„1-kF2+Fi1 

1 + D + UQ 
kF2

+1-2mFsFs+1-F
2 

For this last assumption to be valid, 
(2mFsFs-7 - kF2+ F2^)(kF2

+1- 2mFs+1Fs- F2
S) ^ m2 + k - (A)2. 

This identity will be proved by equating coefficients: 
1. Coefficient of -m2 

4F2FS^FS+1 = 4F2[F2+(-1)s] = 4F*+4(-1)s F2 = -^ (L4s +L2s-4) = [FS+2FS- Fs+1Fs-2]
2- U 

2. Coefficient of—A"2 

F2 F2 _ F2F2 rs rs+1 " rsrs+1-

3. Constant term: 

4. Coefficient of 2mk 

Fs.,FsFf+? + Fs
5Fs+7 = FsFs+1{Fs_1Fs+1 + F2)=l2L2s + (-lf}FsFs+1 

FsFs+i(1 + 2F1F2 + - + 2Fs.1Fs = FSFS+1(FS+2FS- FS+1FS.2) = (2L2s+ (-if lFsFs+1 

5. Coefficient of k. 

2FsFs+1{F2+F2
2 + ~+F2

s_1)+1 = 2F2FS_1FS+1 + 1 = 1 + 2F2[F2+(-Vs] = 2F4
S +2F2(-1)S + 1 

FliF*+i + F4
S= Ff+ [F2+ (-lfl2 = 2F4

s + 2{-1)sF2+ 1 . 
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6. Coefficient of -2m 

FsFs-1 + Fs-1FsFs+t = Fs-1FsfFs+Fs-1Fs+l] = Fs-1Fs[Fs(Fs+2~ Fs+l) + Fs-1Fs+ll 

= Fs-1FsfFsFs+2- Fs+l(Fs~ Fs-l)l - Fs-1Fs(FsFs+2~ Fs+1Fs-2^'-

(F^ + F% + ~ + Flrfl + 2F1F2 + 2FsF3 + .» + 2F9„1FS = Fs-1Fs[FsFs+2-Fs+1Fs-2J 

In proving this identity the following Fibonacci identities were used: 
(a) 1 + 2F1F2 + - + 2FS„1FS = FsFs+2~ Fs+1Fs-2 

(b) FhF2 + "' + Fl= Fs-1Fs 

(c) Fs-1FsH = Ff + <-1)* . 

******* 

A MORE GENERAL FIBONACCI MULTIGRADE 

DONALD CROSS 
St. Luke's College, Exeter, England 

In a recent article I gave examples of multigrades based on Fibonacci series in which 
Fn+2 = Fn+1 + Fn • 

Here I first give a more general multigrade for series in which 
Fn+2 = yFn+1+xFri> 

Consider 
1 3 7 17 47 (whe re *=1 , / = 2). 

By inspection we notice that 
1 m + 3 m + 3 m + lm = 0 m + 4 m + 4™ + Gm 

3 m + lm + lm + \lm = {f" + 10m + 10™ + 14m , etc. 
(where m = 1, 2) . 

We can look at other series of a like kind: 
1 3 10 33 109 (wherex=1, y = 3). 

Here 
1 m + 3 m + 3™+ ^77 + 1 0 / 7 7 + 1 0 m * O^ + O/7** 7m+ 7m + 7 m + 9 m 

3m + 10/77 + 10777 +• 10™ + 3 3 m + 3 3 m = 0 m + 0"7 + 2 3 m + 2 3 m + 2 3 m + 3 0 m , etc. 
(where m = 1,2) 

1 3 11 39 139 (where* = 2, y = 3) . 
Here 

1 m + 1 m + 3 m + %m + 3/77 + ^ m + n/7? + n m = Qm + Qm + Qm + gm 4 gm + 8 m + 10™ + 10777 

3™ + 3 m + 1 1 m + 1 ] m + 1 1 m + 3 9 m + 3 9 m + 3 9 m = Qm + Qm + 0 m + 2 8 m + 2 8 m + 28/7? + 3 6 m + 36™, etc. 
(where m - 1, 2) 

The general series 
a b ax + by bx+ axy + by2 

gives 
x{aF+y{b)m + {x+y-2Max+by)m * (x+y - 2)0m+y(ax + by - b)m+x(ax +by - a)m 

(where/77 = 1, 2). 

Continued on page 66* 


