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The Tarry-Escott problem requires that for each positive integer £ the least integer V/(¢) be found such that there

exist two distinct sets of integers { a,-}, {b,-}, i=1--Nft)such that a]” = b/" for m = 1 -t It issasily showntthat
for each t, Nt} > t + 1 and that for small values of f equality holds. For example (2} = 3 since the sets { 1,8,9 }
and { 3,411 } satisfy the equations 1+8 +9=3+4 + 11 and 12 +82 +92 = 32 +42 + 112, A complete solution
to the problem is unknown.

We call a system L = {S,}}L, of sets of integers ~magic if the numbers

2 "

s< S‘t

are independent of the choice of S; for m = 7 - £ Thus a solution to the Tarry-Escott problem is a ~magic system
of two sets of cardinality N(z).

It has been shown [1] that for appropriate choices of » and &, orthogonal systems of magic Latin k-cubes of order
n can be constructed. In this paper we exhibit a Latin 3-cube of order 8 in which are embedded subcubes possessing
hypermagic properties.

The cube (Fig. 1) comprises 82 ordered triples with entries 0,1,2,3,4,5,6,7. It is orthogonal, viz., each of the triples
from 000 to 777 appears exactly once. in the diagram we show the cube as a set of eight squares which are to be
placed one above the other to form the complete 3-dimensional array. After each of the entries is attached ane of
the letters g, b, ¢, d. Each of the rows in each square is labeled with one of the symbals Ry, R,,, R,,, A Rai Rao.
R, and each of the columns is labeled with one of K, K, -+, K,;. Thus the totality of entries A;; represents a
set of rows parallel to one of the horizontal edges of the cube. A similar statement can be made about all entries
labeled Kj;.

The two subcubes that we consider are designated as A and B. They are constructed as follows. Cube A is obtained
by deleting the second entry in each cell of the original cube and regarding the remaining pair as a two-digit number
in base eight. So that each of the first 64 positive integers may appear in each subsquare of the cube we add 1 to each
of the two-digit numbers. Thus the first row of the first square of cube Ais: 20a 336 76c 51d 44a 67b 22c
05d R,,. Cube B is constructed exactly the same way, deleting the first entry in each cell. For convenience in com-
putation we convert the entries to base ten.

We denote by Ak the k™ (horizontal) square of cube 4 and by B the Kt square of cube 8. Then a;j¢ is the entry
in the /%" row, k™ column of Ak and bjj, the corresponding entry in By .

We now observe that for fixed &

Za,-jk = 2: bijk = 260
i i
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and for fixed [ k

E:aﬁk= Z:QW:=2€a
j j

Similarly

2oaf = obB =3 afk =2 b3 = 11180
i i i )
Thus in a natural way, we have exhibited a system of 256 sets of eight integers that is 2-magic.

We now define a system of 196 sets of 16 integers that is 3-magic. This system has the pleasant property that it in-
cludes the principal diagonals as well as the rows and columns of cubes A and B.

Let Ay, be the set of 16 numbers in Ay that are followed by the letter a. Let Axp, Ake, Akd, Bkas Bk, BkerBrd
be similarly defined. (This defines 64 sets. )

Let ARy; (resp. By;) be the set of 16 numbers in Ay (resp. By ) that lie inrows R;gor R;7,i=0, 1, 2, 3. (This de-
fines 64 sets.) Let AK; (resp. By;) be the set of 16 numbers in Ag (resp. By ) that lie in columns Kjgor Kj7, i=0,1,
2.3, (This defines 64 sets.)

Let AD, (resp. BD,) be the set of numbers in the two main diagonals of cube A (resp. B) of the forma;j;or
ag-j,8-i,i (resp. bjji, bg-;g-i,i). 1t will be observed that each of these entries is labeled by the letter a. Similarly let
ADy (resp. BDy) be the set in the other two main diagonals

{ ai,8-i,i } {ae-i,i,/ } . { bi,g-ii } . { bg-i,i,i } .
(This defines 4 sets.)

Now let L be the system of 196 sets defined above. It can be verified that L is a 3-magic system. Explicitly, if
S €L then
2o s=520, Y s =22360 and Y s* = 1081600.
seS sES sES

We remark in conclusion that we have by no means exhausted the hypermagic systems that can be extracted from
the cubes. To this end we append the following constructions.

HYPERMAGIC CONSTRUCTIONS
In what follows, when it is mentioned that sets of numbers (in this case each set contains 16 two-digit numbers)
are equal in sum, this will mean that they have the same sum of kth powers for k=1, 2 and 3.

We also point out that each row in every one of the eight squares has two numbers that end in a, two numbers that
end in b, two numbers that end in ¢, and two numbers that end in d.

| 1 2 3 4 5 6 7 8
I 2 1 4 3 6 5 8 17
1l 2 7 4 5 6 3 8 1
v 3 4 1 2 7 8 5 6
v 4 5 2 7 8 1 6 3
Vi 4 3 2 1 8 71 6 5
Vil 5 6 7 8 1 2 3 4
Vi 6 3 8 1 2 7 4 5
1X 6 5 8 7 2 1 4 3
X 7 8 5 6 3 4 1 2
Xl 8 7 6 5 4 3 2 1
Xll 8 1 6 3 4 5 2 7
Z
1 2 3 4 5 6 7 8= Square Number

Figure 2 Chart
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How to Read the Figure 2 Chart

The numbers on the bottom of the Chart (below line Z) each denotes the number of some square in the cube. The
number in the column above the number denoting a square denotes a row number (counting from top to bottom) in
the particular square listed on the bottom of the column. For example: Cell (VI1,6) = 2 denotes the 8 numbers on
row 2 to Square 6. Each of the 6 numbers on a row in the Chart represents a magic system. For example: We write
the numbers on row V1! to get row 5 in square 1, row 6 in square 2, --- row 4 in square 8. We now arrange the (result-
ing) 64 3-digit numbers so that the 16 numbers that end in a are in (say) column 1, the 16 numbers that end in b are
incolumn 2, and the 16 numbers that end in ¢ are in column 3, and the 16 numbers that end in ¢ are (say) in column
4.

We first consider the first and third digit of each and every number in the 4 columns (that is cube A) and after add-
ing 1 to each pair of digits we express the 64 2-digit numbers in the scale of 10.

We now add (in cube A) the 16 numbers in column 1 to get the sum s1,

u " u  u ou " u n " " 2 u u u n 32
" " " Tl “ " " " a“ 3 @ o ou u 33

n " " T " " " " " 4 " u " n 5‘4

Then for the sum of the 7' powers (for k=1, 2 and 3) we have s12 522 §32 54 (in cube A).
The exact relationship between the numbers in cube A also holds true for cube B (in the 2nd and 3rd digits).
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