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THE THEORY 

I have discovered a new and most interesting variation on recursions during my work on Bode's rule, Fibonacci-
Lucas (F-L) sequences, by definition, satisfy Hk+1 = Hk + Hk„7. A folded or crimped-in-upon-itself infinite sequence 
is /l/-cyclic and breaks the F-L ruie only once per cycle, I.e., 

(1) Gk+1 = Gk + Gk„t except that | % } / / v = \GN\0 for a l l / /V . 

As an example the N = 3 case is | G3 J- = - 2 , 0 , 2,2,0, 2, 2, 0 , - i n which \G9\O - f & 3 f 3- Application of 
(1) N - 1 times gives 

(2) GQFN^-J + GiFfq = Go , 

where 1 F I is Fibonacci's sequence. This determines the sequences in Table 1. The partial sum of a F-L sequence 

is (Fn+2 - Fm+i) for all m,n, where Fm and Fn are the first and last terms. Using this the sum over one cycle of a 
folded F-L sequence gives 6/v-7 + G/\/- G-j. Since (1) and (2) give Gk - GjN+k for all integers j,k we have 

AM 
(3) ]T Gk = G-7 + G0-Gi . 

k=0 

An easy way to generate folded F-L sequences follows. From (2), \ G/s/f must equal or bfi a multiple of F/sj to 

avoid a fractional - jG/vj^.Let | G/y \Q = Fo + F/y then (2) gives | G/y^ = F7 - Fn„]. Thus every i G/yl is 

simply the sum of a positive and negative Fibonacci sequence. We have 

(4) {GN\k = Fk + (-1)N+1Fk„N, 0 < k <N 

and using the "skew symmetric" fact that 

(5) F„k = (-1)k+1Fk 

gives the simpler expression 

(6) \GN\k = Fk + (-1)kFN-k, 0 < k < N. 

One can also define negative folded F-L sequences which are finite and of length N + 1. Their definition is 

(7) { G-N }k = Fk + (- 1)NFk„N, 0 <k < N. 

An example is j G.5 I = - 5 , 4, - 1 , 3, 2, 5. Substitution of (4) or (6) into (3) permits an explicit sum formula: 

AM 
(8) H{°N\k = LN + <-1? lN+1 

luIVfk ~ L A/ T I - ' 

k=0 

When mod (N,4) = 0then 
-G1 /G0 = (FN~-i - 1)/FN * Lm-t/Lr, 

129 
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where N = 2m. The proof consists of crossmuStiplying and inserting identity (7) of Hoggatt [1] which is true for all 
integers m. This reduces to a special case of identity (21) in the list [1] . Thus mod (N,4) = 0 gives folded Lucas se-
quences. Similarly when mod (N,4) = 2 then -Gj /GQ = Fm-i /Fm giving folded Fibonacci sequences. The proof 
is identical and ends with a special case of identity (23) in his list [1 ] , But the interesting cases are mod (N,4)= 1 or 
3. 

Table 1 
Folded Fibonacci-Lucas Sequences 

N ONE CYCLE OF SEQUENCE SUM 

2 
4 
6 
8 
10 55 

21 
-33 

8 
-12 
22 

3 
-4 
9 

-11 

1 
-1 
4 

-3 
11 

0 
2 
0 
6 
0 

1 
4 
3 
11 

4 
9 
11 

12 
22 33 

1 
5 
16 
45 
121 

3 
5 
7 
9 
11 
13 
15 
33 

233 
89 

-143 

2 0 2 4 
5 - 2 3 1 4 11 

13 - 7 6 - 1 5 4 9 29 
34 -20 14 - 6 8 2 10 12 22 76 

-54 35 -19 16 - 3 13 10 23 33 56 199 
90 -53 37 -16 21 5 26 31 57 88 145 521 

-142 92 - 5 0 42 - 8 34 26 ••• 1384 
- -1^74;2584;610;3194;3804;6998;10802-. 
. . -V5-V5+2; W5+3;V5+4-

The reciprocal periods of planets and satellites are given by alternate members of an odd N-folded sequence. Their 
properties are studied best by placing the origin in the middle hence I define a half-integer subscript/ given by 
2k = 2i + N. 

Theorem: i t f / v } / * / / j t f / v j - / approaches a limiting value for all / as N + <*> for mod (N,4)= I and another for 
mod(/V,4) = 3. 

Proof: It is sufficient to prove this for one value of/whence it is true for al l / by (1) aside from a constant fac-
tor which is of no interest Write h = Yi for typographical ease. I also define even integer m = (N ± 1) /2 when mod 
(N,4) = 3 or 1, respectively. Then by (4) the middle pair for mod (N,4) = 1 is 

{GN)h/{GN\„h = (Fm+1 + F^m)/(Fm + F.m.1) = Fm-f/Fm+2 • V& as N*~ 

via Binet's expression since QN * 0 as N + ~, where af j3= (1 ± V5 )/2< respectively. For mod W;4) = 3 we have: 

| % } / , / ! % } . / , = -Fm+i/Fm„2 * -a3 as N * ~ 
for the same reason. These initial ratios±aT3 define \S f and { S* f and apply to any star (planet) with an in-
finite number of planets (satellites). When mod (N,4)= 1 letS-/, = 2+VETandS^ = 1 as in Table 1. Then (1) gives us 

(9a) Si = Fi+hSh + FhhS-h 

for all positive or negative half-integers/ Similarly when mod (N,4) = 3 letS*/, = - 1 and $%= 2 + V 5 then 

(9b) sf = Fi+hsj; + Fhhs:h. 
Substitution of (5) into (9a,b) proves the equivalence of S and S* but for signs i.e., 

(10) Sf = (-1)hhS-i or S*f = (-1)i+hSj . 

Use of Fj+h + 2Fj^ = Lj+h in (9a,b) gives the elegant relations 

(11) Sj = Ll+h + s]~5Fhh an d Sf = Lhh + JBFi+h 

(11a) Sf = sQ(sJ~5Fi+h - Lhh) and Sf = s0(Lj+h - y/5Fhh) 
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which via Binet's theorem become 

(12a) Sj = faW-//*V'y*0 
(12b) Sf= ld + l - i r h a i ) ^ 

which immediately give (10) again and where «js^ = (ah + ah) = 2.058171 = 1/0.485868. 
The Lucas complement of any two-point sequence is defined by the two apart sum operator 2 *, namely 

(13) Y/Wn = (WnH + Wn-lt/d , 

where d is the difference in the roots of the recursion's characteristic equation [2] and d = V ^ f o r F-L sequences. It 
is known that 2 / 2 = /, the identity operator. We come now to the strongest property of I S | and I S* k 
Aside from signs they are their own complements! The fact that this property is not true of the Fibonacci and Lucas 
sequences themselves indicatesthe greater importance of | S I and its approximation I G/y 1. After all j G/\/l 

is a generalization of | F J- and j Z. | . Applying 2 t o the elegant (11) immediately gives 

(14) SfS/ = Sf = (-1)hhS-i 

since __ _ 
y/SJ^Fn = Ln and S1"^ = sj5Fn. 

Alternatively given (14) we can ask what the ratio S^/S^ in (9) must be. One obtains 
Slh-4S_hSh-S*h-0. 

2. THE OBSERVATIONS 
Several facts of satellites (planets) need to be explained. They can be remembered using the vowel mnemonic, 

aeicotoeA. They are: (i) rule(s) for the major semi-axes of the orbits, (ii) their near zero eccentricities, (iii) sin /<*0, 
i.e., their orbital inclinations are nearly 0 or 180° for outer satellites, (iv) their spins are almost all counterclockwise 
(ccw) with a preference for 23° < co< 29° where the sun and Jupiter are prominent exceptions, (v) their spins satis-
fy the narrow range 6 < P < 25 hr unless tidally disturbed, (vi) the sun's obliquity e~ 7° hence the sun's equator 
does not lie in the invariable plane, (vii) the sun's Angular momentum is very small (it rotates in « 30 day). I add 
(viii) that each satellite system has one or two satellites much more massive than the others. The massive satellites 
are called secondaries and all others are tertiaries. Thus Saturn's and Jupiter's secondaries are Titan+Hyperion and 
Galilei's quadruplet, respectively. The non-zero ti l t of most of their axes suggests that the torque that each exerts on 
the other causing precession may be important. The ideal t i l t is then 45°. 

I envisage that the sun's family began with the sun and Jupiter (+ ?) Saturn from a contracting cloud and that all 
planetary and satellite systems start as binary systems, i.e., a primary + secondary(ies). All other bodies, tertiaries, 
were subsequently formed by accretion. The sun's nebula would have dispersed early due to radiation pressure and 
infalling due to the Poynting-Robertson effect Many planets and satellites should have formed from the nebula left 
around Jupiter. Binaries enable the capture of tertiary bodies. A single primary cannot capture a tertiary body 
whose orbit must ab Initio be an ellipse or hyperbola. Outer satellites, those beyond the secondaries, act as if the 
secondaries were part of the primary. When the maximum elongation angle of the secondaries is very small they act 
as a point source. The number of major planets makes N = 33. Although N may be slightly different for the satellite 
systems | G^ J- * 1 S I rapidly and for N > 13 the discrepancies are < one percent as Table 1 shows. 

In Table 2, major bodies are capitalized. Also pons, faye, neujmin and hungaria refer to groups of comets at 61 < 
P < 11 yr, 6.3 < P < 7.9 yr, P = 18 yr, and a group of small planetoids 2.5 < P< 3.0 yr named after the first dis-
covered [3] 434LHungaria (P = 991 da). There is a void in the planetoid distribution [4, p. 169] separating these 
from the normal asteroids indicated by a typical member Astrea. See also [10, 11]. Mote that satellites of Saturn 
and Jupiter are included. The accuracy is very high. Discrepancies are never more than 2.5 percent except Jupiter 
(6%) and Galilei's quadruplet (10%) both of which are secondaries for which the rule is not intendecLThe observed 
Sapetus/Phoebe ratio (outer satellites of Saturn) is 6.938. The predicted ratio is very nearly (76 + 21%/5 )/(11 +3 N / ^ ) 
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= 75004/10802 » 6.9435. This is amazing agreement, an error of 0.0008 parts! The otrswved and predicted Saturn/ 
Uranus ratios are 2.852 and 10802/3804 = 2.840, an error of 0.004. The Direct/Retrograde satellites of Jupiter give 
2.835. Again excellent agreement. The agreement for Venus/Earth is similar. The data in [5] give JXI S/Retrograde = 
1.18 compared with a predicted 120. Planet X was predicted [6] from perturbations of Halley's comet, i find its 
period to be 521 to 524 yr. Bailey [7] proposed that the moon was once between Venus and Mercury. 

Table 2 
Reciprocal Periods 

Sun pons Nep X Uran Satur neujm Jup faye 
3524578,.- 4558, -1974, 2584, 610, 3194, 3804, 6998, 10802, 17800, 28602, 46402 

JXH * Retr Direct 
Phoebe 

Astrea Hungar Mars earth Venus luna? Mercury Sun 
075004, 121406, 196410, 317816, 514226, 832042, 1346268, 2178310, 3524578, (5702888) 
lapetus T+H Galilei Rhea dione Tethys Almathea 

The predicted effective solar rotation period is 32.8 day. If ail planetary (and satellite) systems have about the 
same number of bodies and if these are tied to the primary's rotation then stars rotating much faster than the sun 
will have their planets too close to permit life. This would be true of white stars (earlier than type F5) whose rota-
tion period is about 0.01 of the sun's. The theory predicts Mercury's period to be 86 £0.2 day. Hence some mech-
anism decreased its orbital energy and increased its orbital angular momentum. Furthermore the planetary rotations 
seem to be quantized near 1.14, 0.70, 0.43, 0.27 (asteroids), 0.17, 0.10 (solar grazing body) day. Although Folded 
sequences have made excellent predictions far more accurate than any previous work the sequences for Jupiter's a*rd 
Saturn's satellites can be modified to include the sun's motion around the planet. For Saturn's satellites the sequence: 
0.093, 0.636, 1.815, 4.809, 12.612 •• is equally good. Similarly a Jovian sequence: 0.23, 1.35, 3.82, 10.11 -•- is a 
good predictor. The units are (kiloday)^. The first term of each sequence is the motion of planet and sun around 
each other and is already determined by the sequence forjJie planets [8, 11]. 

Alternate F-L members approach the limit | = (3 + y/b )/2. The limiting distance ratio, d, is given by Kepler's III 
law: a3 =p2. Hence d- 1.899547627. Planets and satellites were accreted from grain orbits of maximum eccentricity 
e thus (1 -e)l(\ +e) = Md. This function occurs often in science and deserves its own name. I define 

oin(x,p) = (1 -x)/(1 +px) 

because it is its own inverse, i.e., if j / = oin(x,p) thenx = ofn(y,p), wherep is a parameter. This gives e = 0.3102. 

3. INNER SATELLITES 

Once again the god of time Chronos or Saturn holds the secret Table 3 gives the reciprocal periods, £1, 

Table 3 
Inner Saturnian Satellites 

Rhea Dione Tethys M+2E Janus Rotn? Cassin Q,gl 

221.4 365.4 529.7 838.0 1310.6 2091.5 3345.0 5379.4 
144.0 164.3 308.3 472.6 780.9 1253.5 2034.4 

123.7 20.3 144.0 164.3 308.3 472.6 780.9 1253.5 

in (kiloday)"1. The errors for Rhea, Dione and Tethys are each 0.01 percent! The first differences are the synodic 
frequencies and they are a F-L sequence! Cassini's division falls on one of these values. Slightly different sequences 
occur in [9 ] . I must define two new operators. They are a forward knight operator K^A+ A2 and a backward knight, 
operator N - V - V2 by analogy with the chess piece. More generally: 
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P 

(15) Kp =A* r £ ( P\ Ax 

For any F-L sequence KpFn = Fn for al! n and all integersp > 0. Carried leftwards Table 3 predicts the period of a 
grazing satellite to be 0.155 day. Table 3 is a shifted F-L sequence. It satisfies 
(16) Kton + £l* = an, 

where Q® = 0,0571 inverse days. But £2° is very nearly the mean reciprocal period of massiveTitan and Hyperion! 
For the terrestrial planets the situation is almost as good. Errors are negligible but for Mars. Here we have (16) with 

Table 4 
Terrestrial Planets in (KiSodayF1 

Hungar (Mars) Earth Venus luna? Mercury (Vulcan) 
1.026 1.851 2.738 4.450 7.049 11.360 18.270 29.49 

0.825 0.887 1.712 2.599 4.311 6.910 11.221 
0.062 0.825 0.887 1.712 2.599 4.311 

£2° = 0.000 139 invday. This compares well with the synodic frequency between Jupiter and Saturn, 0.000 137 9. 
Hence the frequencies of inner planets are increased by the frequency of Jupiter and Saturn conjunctions. Carried 
leftwards Table 4 suggests a solar rotation of 25 day. The Martian error can [9] be removed by writing £1° = 
-.000 256 at a small expense to Mercury. The inner Uranian triplet satisfies 

6a£2 = VX2 and A£2„ * ^ ° = £ln , 
where £2° = 0.0858 invday and 5 is the central difference operator. 

COLOPHON 
Johannes Kepler's Zeroth Law appeared in the year F17. It was the first cosmological attempt and states that 

planets orbit in spheres which in- and circum-scribe the F5 perfect solids arranged in the order 2, 8, - 8 , 0, - 2 erf 
faces minus vertices-all but one, members of J Ft. It is to his faith in pure mathematics that I am indebted. F14 
years later I found that the universal answer is (S2 ~ /)£2 * 0. Another genius, J. C. Maxwell, also began his life [11, 
p. 93] studying the perfect solids and provided us with an elegant derivation of kinetic theory to which I am also in-
debted. Pussy willow leaves [1] and Houseleek petals display the 5/13 arrangement. And in haiku let us say: 

Nature numbers hides 
In shells, petals, moons to find 
Is to hear with her 

and in tanka style: 
Each conjunction that I see 
So real that 
'junctions too must f i t the rule 
For are not 'junctions real 
And earth's motion their conjunctions. 
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DIOPHANTINE REPRESENTATION OF THE LUCAS NUMBERS 

JAMES P. JONES 
University of Calgary, Calgary, Alberta, Canada 

The Lucas numbers, 1, 3,4, 7, 11, 18, 29, - , are defined recursively by the equations 
Lf = 1, L>2 = 3 and Ln+2 = Ln+<i + Ln . 

We shall show that the Lucas numbers may be defined by a particularly simple Diophantine equation and thus ex-
hibit them as the positive numbers in the range of a very simple polynomial of the 9th degree. 

Our results are based upon the following identity 
(D L2

n+1-Ln+1Ln-L
2
n = 51-1 ) n + 1 . 

This identity (cf, [1] p. 2 No. 6) actually defines the Lucas numbers in the following sense. 
Theorem I .For any positive integer/, in order that y be a Lucas number, it is necessary and sufficient that 

there exist a positive number x such thait 
(2) y2 - yx -x2 = ±5. 

Proof. The Proof is virtually identical to that of the analogous result for Fibonacci numbers proved in [2 ] . 
Theorem 2.The set of all Lucas numbers is identical with the position values of the polynomial 

(3) y(1-((y2-yx-x2)2-25)2) 

as the variables* and y range over the positive integers. 
Proof. We have only to observe that the right factor of (3) cannot be positive unless equation (2) holds. Here we 

are using an idea of Putnam [3] . 
It will be seen that the polynomial (3) also gives certain negative values. This is unavoidable. It is easy to prove that 

a polynomial which takes only Lucas number values must be constant (cf. [2] Theorem 3). 
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