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The Catalan numbers | 1, 1, 2, 5, 14, 42, — r are the first sequence in a sequence of sequences S,- which arise in 
the first coiumn of matrix inverses of matrices containing certain columns of Pascal's triangle, and which also can be 
obtained from certain diagonals of Pascal's triangle [1 ] , [2] . These sequences S,- are also the solutions for certain 
ballot problems, which counting process also yields their convolution arrays. The convolution triangles for the se-
quences 5/ contain determinants with special values and occur in matrix products yielding Pascal's triangle. Sur-
prisingly enough, we can also find determinant properties which hold for any convolution array. 

1. OW THE CATALAN WUIV1BERS AMD BALLOT PROBLEMS 

When the central elements of the even rows of Pascal's triangle are divided sequentially by 1, 2, 3, 4, —, to obtain 

1/1 = 1, 2/2 = 1, 6/3 = 2, 20/4 = 5, 70/5 = 14, 252/6 = 42, - , the Catalan sequence j Cn \ results, 

The Catalan sequence has the generating function [4] 

(1.2) CM=1^1^L = Y.C„x" 
2x 

n=0 

and appears in several ways in Pascal's triangle. 
The Catalan numbers also arise as the solution to a counting problem, being the number of paths possible to travel 

from a point to points lying along a rising diagonal, where one is allowed to travel from point to point within the 
array by making one move to the right horizontally 
the number of oossihle oaths to arrive there from the 

it to points lying along a rising diagonal, where one is allowed to travel tram point to point witnin tne 
iking one move to the right horizontally or one move vertically. Each point in the array is marked with 
of possible paths to arrive there from the beginning point P in Figure 1 below. 
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Given two sequences j an I and j bn \, there is a sequence j cn I called the convolution of the two sequences, 

n 
cn * X ] br\-kak • 

k=0 

If the sequences have generating functions A(x), B(x), and C(x), respectively, then CM - A(x)B(x). The successive 
convolutions of the Catalan sequence with itself appear as successive columns in the convolution triangle 
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Notice that these same sequences appear on successive diagonals in Figure 1. 
Call the Catalan Sequence S%, the first of a sequence of sequences S,- which arise as the solutions to similar count-

ing problems where one changes the array of points. The counting problem related to S2 we illustrate in Figure 2 

below. The circled vertices yield S2 - { 1, 1, 3, 12, 55, 273, ••• i ; under this is the first convolution 

| 1, 2, 7, 30, 143, - \, which can be computed from the definition of convolution. Successive diagonals continue 

to give successive convolutions of S2 . 
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Figure 2 

Similarly for S3 = j 1,1,4,22, 140, —J-, the circled vertices are the sequence^, and under this appears the first 

convolution, and so on, as shown in Figure 3. 
The sequences S/ and their convolution triangles are the solution to such counting problems, where one counts the 

number of paths possible to arrive at each point in the array from a beginning point from which one is allowed to 
travel from point to point within the array by making one move to the right horizontally or one move vertically. For 
the sequence £/, the points in the grid are arranged so that the successive circled points are / to the right and orae 
above their predecessors. By the rule of formation as compared to the rule of formation of the convolution array for 
Sf as found in [1 ] , one sees that we have the same sequences S/ in both cases. Here, we go on to relate these convo-
lution arrays to Pascal's triangle as matrix products. 
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Figure 3 

2. THE CATALAN CONVOLUTION TRIANGLE IN A SV1ATR1X 

Write a matrix A which contains the rows of Pascal's triangle from Fig. 1 written on and below the main diagonal 
with alternating signs. Write a matrix B containing the Catalan convolution triangle on and below its main diagonal, 
augmented by the first column of the identity matrix on the left. Then B is the matrix inverse of A, so that AB = lf 
the identity matrix, where, of course, all matrices have the same order. That is, for order 7, 
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= / 

As proof, the columns of A are generated by [x(l 
The columns of AB, then, are the composition 

1(1 ~~ 

x)]J~7 while those of B are generated by [(l-sjl - 4x)/2lJ 

-x)x)/2] H *H ^1-4(1-

the column generators for the identity matrix. Notice that the row sums of the absolute values of the elements of A 
are the Fibonacci numbers, 1, 1, 2, 3, 5, 8, 13, —, while the row sums of B are the Catalan numbers. 

Mow, if the Catalan convolution triangle is written as a square array and used to form a matrix C, and if Pascal's tri-
angle is written as a square array to form matrix P, then P is the matrix product AG. First, we illustrate for 5 x 5 
matrices A, C, and/I* 
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Again considering the column generators and finding their composition, we prove that AC = P, The column genera-
tors of C are 1(1 - \J1 - 4x)/2x]J~1, making the column generators of the matrix product AC to be 

[(l-^r^xTT^x))/2x(l-x)]H = [l/(l-x)]H, 

the generating functions of the columns of Pascal's triangle written in the form of/3. 
Fortunately, the finite n x n lower left matrices A have determinants whose values are determined by an n x n 

determinant within the infinite one. For infinite matrices A, B, and C, if we know that<4$ = C by generating func-
tions, then it must follow that AB = dor n x n matrices, A, B, and C, because each/? x n matrix is the same as the 
n x n block in the upper left in the respective infinite matrix. That is, adding rows and columns to the n x n matrices 
A and B does not alter the minor determinants we had, and similarly, the n x n matrix C agrees with the infinite ma-
trix C in its/? x n upper left corner. We write the Lemma, 
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Lemma. Let A be an infinite matrix such that all of its non-zero elements appear on and below its main diagonal, 
and let AnXn be the n x n matrix formed from the upper left corner of A Let B and C be infinite matrices m\h 
Bnxn and Cnxn then x n matrices formed from their respective upper left corners. If AB = C, thenAnxnBnXn

 = 

CnXn-
We will frequently consider n x n submatrices of infinite matrices in this paper, but we will not describe the de-

tails above in each instance. We can apply earlier results [2], [3] to state the following theorems for the Catalan con-
volution array, since each submatrix of C in Theorem 2.1 and 2.2 is multiplied by a submatrix of A which has a unit 
determinant to form the similarly placed submatrix within Pascal's triangle written in rectangular form. 

Theorem 2.1. The determinant of any n x n array taken with its first row along the row of ones in the Catalan 
convolution array written in rectangular form is one. 

Theorem 2.2. The determinant of any k x k array taken from the Catalan convolution array written in rectan-
gular form with its first row along the second row of the Catalan convolution array and its first fcolumn the fh 

column of the array has its value given by the binomial coefficient 

(k+'-'\ 
On the other hand, taking alternate columns of Pascal's triangle with alternating signs to form matrix Q and alter-

nate columns of the Catalan convolution triangle to form matrix R as indicated below produces a pair of matrix 
inverses, where the row sums of absolute values of the elements of Q are the alternate Fibonacci numbers 1, 2, 5, 13, 
34, —, F2k+h - / while the row sums of R are 

1, 2, 6, 20, 70 « ) • 
the central column of Pascal's triangle. For 6 x 6 matrices Q and R, 

QR = 

1 0 0 0 0 0 
- 1 1 0 0 0 0 

1 - 3 1 0 0 0 
-1 6 -5 1 0 0 

1 -10 15 -7 1 0 
- 1 15-35 23-9 1 

• 

1 0 
1 1 
2 3 
5 9 

14 28 
42 90 

••» 

0 
0 
1 
5 

20 
75 

0 0 0 
0 0 0 
0 0 0 
1 0 0 
7 1 0 

35 9 1 

= / 

;th Here, they column of Q is generated by 

QM 
1+x ,(1+xP 

M 

:th while they column of R is generated by 

R(x) LulLzM. 
2x 

(1-J1- 4x)2 

Ax 

M 

so that they column of QR is generated by 

*h1 

the generating function for the identity matrix. 
3. MATRICES FORMED FROM CONVOLUTION TRIANGLES OF THE SEQUENCES S/ 

Now we generalize, applying similar thinking to the sequences $/. We use the notation of [2], letting P,j be the in-
finite matrix formed by placing every/column (beginning with the zeroth column which contains ithe sequence 
S;1) of the convolution triangle for the sequence S; on and below its main diagonal,and zeroes elsewhere. Then P0j 

contains every/th column of the convolution array for£0 = \ 1, 1, 1, — \ , which is Pascal's triangle, let P'/j denote 
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the matrix formed as Pjj from every jth column of the convolution array for S, but beginning with the column which 
contains S/°, so that the nth column of the matrix contains the sequence s/n'1^. Let Pf: be formed as tp/j ex-
cept that the columns are written in a rectangular display, so that the first row is a row of ones. Then, referring to 
Section 2, 

C = P*. P = P\ A = P 

so that AC = P becomes 
(3.1) 

One also finds that 

(3.2) 

,-t 
1,1 B = P: it u 

p * = P' 

0,1 R 1,2 

1,1 1,1 

p ~ 1 p * 
1,1 1,1 

0,1 

P'* 
0,1 
1 We extend these results toS 2 , where we will illustrate f irst P~ 'P2 2 = / for 5 x 5 submatrices [see 2 ] : 
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- 1 
1 
3 
12 
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1 
3 
12 
55 

0 
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0 
0 
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0 
0 
0 
0 
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= / 

Here, the row sums of P2f2 are 1, 2, 7, 30, 143, - , which we recognize as S2, the first convolution of $2- N o t i c e 

tha t /^ 2 contains the odd rows of Pascal's triangle as its columns. 
If we'form P'22 using the even rows of Pascal's triangle taken with alternate signs on and below the main diagonal, 

then 
(3.3) 

which we illustrate for 5 x 5 matrices: 

pr-1p* _ „* 

1 0 0 0 0 
0 1 0 0 0 
0 - 2 1 0 0 
0 1 - 4 1 0 
0 0 6 - 6 1 

1 
1 
3 

12 
55 

1 
2 
7 

30 

1 
3 

12 
55 

143 273 455 

1 
5 

25 
130 
700 

1 1 
1 2 
1 3 
1 4 
1 5 

1 
3 
6 
10 
15 

1 
4 
10 
20 
35 

1 
5 
15 
35 
70 

Of course, this means that the results of Theorems 2.1 and 2.2 also apply for the sequence S2. 
Now, if the matrix P* is formed from every other column of the S2 convolution array written in rectangular 

form, the matrix product p'22
p\2 becomes the matrix containing every other column of Pascal's triangle written in 

rectangular form. For example, for the 5 x 5 case, 

1 0 0 0 
0 1 0 0 
0 - 2 1 0 
0 1 - 4 1 
0 0 6-6 

0" 
0 
0 
0 
1 

. 

- 1 
1 
3 
12 
55 

1 
3 
12 
55 
273 

1 
5 
25 
130 
700 

1 
7 
42 
245 
1428 

r 
9 
63 
408 
2565_ 

= 

~1 1 
1 3 
1 6 
1 10 
1 15 

1 
5 
15 
35 
70 

1 
7 
28 
84 
210 

1 
9 
45 
165 
495 

This also means that, using earlier results [3] , if we take the determinant of any square submatrix of P22 with 
its first row taken along the first row of P2f2 the determinant value will be 2^k^k"1^2^ if the submatrix ta'ken has 
order k. 

If we shift the columns of P2 1 one to the left so that the new matrix begins with S2 in its first column, we find 
that, for 5 x 5 submatrices, 
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1 0 
-1 1 
0 -3 
0 3 

. 0 -1 

0 0 0" 
0 0 0 
1 0 0 

-5 1 0 
10 -7 1 

. 

" 1 
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7 
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143 

1 
3 
12 
55 
273 

1 
4 
18 
88 
455 

1 
5 
25 
130 
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1" 
8 
33 
182 
1020 

= 

"1 1 
1 2 
1 3 
1 4 
J 5 

1 
3 
0 
10 
15 

1 
4 
10 
20 
35 

1' 
5 
15 
35 
70 

We shall show that this is also true for the infinite matrices indicated, which means, in light of our previous results, 
that the results of Theorems 2.1 and 2.2 also apply to the rectangular convolution array for $2 if we truncate its 
zeroth column. 

Using every other column, we can make some interesting shifts. We already observed that P2;2^2,2 = ^0,2-^e ^ s o 

can write P~2 2P*2 2> w n ' c n provides every other column of Pascal's triangle, beginning with the column of integers. 
We also can write'two matrix products relating the matrix containing the odd columns of the convolution matrix for 
S2 to matrices containing every other column of Pascal's triangle, each of which is illustrated below for4x4 submatrices. 

1 
-1 
0 
0 

0 
1 

-3 
3 

0 
0 
1 

-5 

0 
0 
0 
1 

1 1 1 1 
2 4 6 8 
7 18 33 52 

30 88 182 320 

1 1 1 1 
1 3 5 7 
1 6 15 28 
1 10 35 84 

1 
0 
0 
0 

0 0 
1 0 

-2 1 
1 -4 

0 
0 
0 
1 

1 1 1 1 
2 4 6 8 
7 18 33 52 

30 88 182 320 

1 1 1 1 
2 4 6 8 
3 10 21 36 
4 20 86 120 

Since we can establish that the corresponding infinite matrices do have the product indicated, if we form a rectangu-
lar array from the convolution array for S2 using every other column, whether we take the odd columns only, or the 
even columns only, the determinant of any k x k submatrix of either array which has its first row taken along the 
first row of the array will have determinant value given by 2^k^k~1^2^. 

Next, form P^j containing every third column of the convolution triangle for S3. Then, from I2],P~33 contains 
every third row of Pascal's triangle taken with alternate signs on and below the main diagonal with zeroes elsewhere, 
as illustrated for 5 x 5 submatrices: 

1 0 
-1 1 
0 - 4 
0 6 
0 - 4 

0 
0 
1 

-7 
28 

0 
0 
0 
1 

--10 

0 
0 
0 
0 
1 

• 

1 
1 
4 

22 
140 

0 
1 
4 

22 
140 49 

0 0 
0 0 
0 0 
1 0 

10 1 

Notice that the row sums of P33 are 1, 2, 9, 52, 340, —, or Si, the first convolution of S3. As before, we find that 

(3.4) P7lPl 3,3 3,1 0.1 

which allows us to again extend Theorems 2.1 and 2.2. We also find 

(3.5) 

which is illustrated for 5 x 5 submatrices: 

r3,3r3,3 0,3 

" 1 0 0 0 0" 
0 1 0 0 0 
0 - 3 1 0 0 
0 3 - 6 1 iQ 
0 - 1 15 - 9 1 

" 1 1 1 1 1" 
1 4 7 10 13 
4 22 49 85 130 

22 140 357 700 1196 
140 969 2695 5740 10647 

1 1 1 1 " 
4 7 10 13 

10 28 55 91 
20 84 220 455 
35 210 715 1820 
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Using earlier results [3 ] , this means that, if we take any k x k submatrix of P33 which has its first row along the 
first row of P33, the value of its determinant is 3[k(k~1}/2], However, we have the same result if we take every third 
column to form the array, whetherwe take columns of the convolution array f o r 5 j of the form 3k, 3k + 1, or 3k + 2. 

Next, we summarize our results. First the matrix pjt always contains the ith rows of Pascal's triangle written on 
and below the main diagonal with alternating signs, beginning with the first row, and zeroes elsewhere. That is, the 
Ith column of PjJ contains the coefficients of (1 - x)1 * ,^~1\ j = 1, 2, - k on and below the main diagonal, 
and zeroes above the main diagonal. Inspecting Pjj gave the row sums as sf, the first convolution of Sj. Both of 
these results were proved in [2] . 

If we form the matrix P,
jJ

1 using the Ith rows of Pascal's triangle taken with alternate signs on and below the main 
diagonal, but beginning with the zeroth row, so that the/f /7 column contains the coefficients of (1 -x)'Q~1K / = 1, 
2, —, and form the matrix Pj 1 so that its elements are the convolution triangle for Sj written in rectangular form, 
then 

(3.6) r-'p* °P*, 
l,i l, i 0,1 

the matrix containing Pascal's triangle written in rectangular form. 
If we form an infinite matrix Pff from every ith column of the convolution array for the sequence Sj, then the ma-

trix product 
(3.7) P^PJ. = />•. 

the matrix formed from every Ith column of Pascal's triangle written in rectangular form. Further, (3.7) is only one 
of 2i similar matrix products which we could write. By adjusting the columns of PJJ to write modified matrices which 
are formed using the Ith rows of Pascal's triangle as before but taking the first column of the new matrix (PJ-J),. to 
contain the r row, so that its j t h column contains the (r + (j - 1)i) row of Pascal's triangle or the coefficients of 
(1 -x)r+l'J~ ,j= 1, 2, •••, on and below its main diagonal, we can write 

(3.8) (PJp P* = (Pi.) . , r = 0, 1, -.., / - 1, 
where (PQJ) contains every Ith column of Pascal's triangle written in rectangular form beginning with itsrth column. 
Notice that f= 0 in (3.8) gives (3.7), and that 

tf-fPiJ>0 Whi'e PU=lPlPl-
We can also write 
(3.9) pllK;K={pl;K-r r = o, i,-,i-7, 
where (P*.) contains the ith columns of the convolution array for 5/ beginning with the rth column. Also, 

(3.10) <PU><Pli>r = (POj'o ' Ph- ' = °> l - ' ' - 1 

(3.11) iP^)iPl)r=(Pl.)H. 

The matrix identities of this section are proved next. 
4. PROOF OF THE MATRIX IDENTITIES GIVEN IN SECTION 3 

The proof of (3.3) follows from [2] but is a little subtle since we do not have explicit formulas for the generating 
functions for Sj, i > 2. However, we do have the following from [2 ] : USj(x) isthe generating function for Sj and if 
SQ(X) = f(x), then 

ffxSjM) = Sf(x); HS2
2M) = S2M;>; f(xSk

k(x)) = Sk(x). 

And further, f(1/S.j(x)) = S^(x), etc. That means 

S2(x(1-x)2) = S2(x/[1/(1-x)2]) = SoM = ^ — 
which generates Pascal's triangle. 
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The genera! case given in (3.6) follows easily by replacing 2 with / in the above discussion. We prove (3.7) by taking 

Siixia-x)1]' = (j^)' 

the generating function for the matrix containing the ith columns of Pascal's triangle. Equation (3.8) merely starts 
the matrices with shifted first columns, but it is the constant difference of the columns, or the power of (1 -x) 
which is the ratio of two successive column generators, which is used in the relationships shown above. 

All of this raises a very interesting situation. Clearly, if we can obtain Pascal's triangle from the convolution array 
for Sj by matrix multiplication, then we can get the convolution array for any Sj< by multiplying the convolution 
array for Sj by a suitable matrix. The possibilities are endless. Also, one can factor Pascal's triangle matrix when 
written in its rectangular form into several factors. 

Mow, in all of these special matrix multiplications, when AB = C, the column arrangement of B determines the col-
umn configuration of C. Whatever appears in A for Ith columns of a convolution array forS, will appear as the rec-
tangular convolution array for Sj (every column) if the proper middle matrix is used. Starting with, say, S2(x) as the 
first column of A and then xS\(x)f x2S\(x)f — , one can use as the middle matrix the one with column generators 
(1 +x), (1 +x)2, (1+x)3, -,where S„Jx) = (1+x). UO\NS„1(XS3

2(X)) = SJX), etc. Thus the columns of the right-
most matrix are 5| , S\, S\, —, as is to be expected. 

5. DETERMINANT IDENTITIES IN CONVOLUTION ARRAYS 

Since, in Section 3, we found several ways that /*,*/ and P*j, when multiplied by matrices having unit determinants, 
yield matrices containing columns of Pascal's triangle, and since the n x n submatrices taken in the upper left cor-
ners have the same multiplication properties as the infinite matrices from which they are taken in these cases, we 
have several theorems we can write by applying earlier results concerning determinant values found within Pascal's 
triangle [3] . Specifically, (3.5) and (3.7) allow us to write the very general theorem, 

Theorem 5.1. Write the convolution array in rectangular form for any of the sequences Sj. Any n x n suib-
matrix of the array which has its first row taken along the row of ones of the array has a determinant with value one. 
Any/7 x /7submatrix of the array such that its first column lies in thejtfl column of the array and its first row is taken 
along the row of integers of the array has determinant value given by the binomial coefficient [n+f~1\ . Any 
n x n matrix formed such that its columns are every rth column of the convolution array beginning with thejth col-
umn, / = 0, I —, r- 1, has a determinant value of rn'n~1 . 

However, the surprising thing about Theorem 5.1 is that so much of it can be stated for the convolution array of 
any sequence whatever! Hoggatt and Beirgum [5] have found that MS is any sequence with first term 1, then the 
rows of its convolution array written in rectangular form are arithmetic progressions of order 0, 1, 2, 3, -wi th con-
stants 1, s2, s\, s\, •••, where s2 is the second term of sequence S. Applying Eves' Theorem [3] , 

Theorem 5.2. Let S be a sequence with first term one. If any n x n array is taken from successive rows and 
columns of the rectangular convolution array for S such that the first row includes the row of ones, then the deter-
minant has value one if the second term of the sequence is one and values^ ' n~1' '2 if the second term of£sss2. 

Theorem 5.3. Let S be a sequence with first and second term both one. If any n x n array is formed from suc-
cessive rows and columns of the rectangular convolution array for S such that the first row includes the row of in-
tegers and the first column includes SJ~ , j = 1, 2, •••, then the determinant of the array is given by the binomi-
al coefficient I n +^ ~ 1 \ . 

Conjecture. LetS be a sequence with first term one and second terms2. If any/? x n array is formed using 
the successive rows and columns of the rectangular convolution array forS such that the first row includes the row 
1u2, 2u2, 3u2, 4u2, - , a n d the first column includes^ , / = 1, 2, —,then the determinant of the array is given by 

$n(n-1)/2 f n + j - l \ . 

For further interesting relationships, see Hoggatt and Bruckman [1 ] . 
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LETTER TO THE EDITOR 
n C J . April 21, 1975 
Dear Editor: 
Following are some remarks on some formulas of Trumper [ 5 ] . 

Trumper has proved seven formulas of which the following is entirely characteristic 

(1) FnFm - FxFn+m„x = (-1) Fx„mFn„x . 

He actually gives 13 formulas, but the duplicity arises from the trivial replacement of A- by -x in all but the seventh 
formula. 

St is of interest to note that the formulas are not really new in the sense that they can all be gotten from the single 
formula 
(2) Fn+a Fn+b - Fn Fn+a+b = (- 1)nFn Fb 

by use of the negative transformation 

(3) F-n = (-1)nHFn. 

For example, in (1) replacen by/7 +x and m bym +x, and we have 

Fx+n^x+m- FxFx+n+m = (~U F~mFn
 = ("~D FmFn, 

the last step following by (3). But the formula is then simply a restatement of (2) with n replaced byx, a by n, and£ 
by m. Similarly, for his formula (4), which we may rewrite as 

Fn+x Fm ~ Fn Fm+x = (~ H Fn~m Fx , 

we have only to set* = 3, m =n +b and use (3) again to get (2), and all steps are reversible. The reader may similarly 
derive the other formulas. 

For reference to the history of (2), see [1 , p. 404], [2 ] , [3] , Formula (2) was posed as a problem [6] . Tagiuri is 
the oldest reference [4] of which I know. Formula (2) is the unifying theme behind all the formulas in [5 ] . 

[Continued on page 146.] 


