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We shall consider the sequences,{w,-,(r,s,' a,c}}, defined by wp = r, wy = s and Wy, = aw,-1 + cwp-2 forn > 2;
henceforth denoted by { Wp f where no ambiguity may result. We shall confine our attention to those sequences
for which r, s, a, and ¢ are integers with (a,c) =7, (r,s) = 1, (s,c) = 1, ac # 0 and w,, # 0 for n > 1. The major result of
this paper will be a complete classification of all sequences { Wy } for which wy | wo for all integers & > 1.

If wy =0 and w, =1, we have a well known sequence which we shall denote, following Carmichael [1], by
{D,,(a,c)} , or { D, } if no ambiguity may result, and concerning which we shall assume the following facts to

pe known {cf. {11, [2]): F: (0,,c)=1 forall n > 1,

F2: (D,,Dpeq) = 1 forali n.
F3: lfciseven, then O, is odd for all n.

If ¢ is odd and a is even, then O, =n (mod 2) for all n.
If both 2 and ¢ are odd, then J,, is even if and only if 7= 0 (mod 3).

F4: Leth = a* +4c and let p be an odd prime.

Let (o) = 0]~

If (p,c)=1, thenp | Dp — (b/p).
F5: Dmtn=¢0mDp.g+0m+10, forallm > 0andn > 1.
F6: 1fmin, then 0y |0y .

If w, =2 and w, = a, we have a well known sequence which we shall denote, following Carmichael [1], by

{S,, (a,c)}> ,¥or by '{ Sh } if no ambiguity may result, and concerning which we assume the following fact to be

Kknown:
F7: Dz, = DySpyforalln.
Theorem 1: Wnlrs: ac) = sDpla,c)+reDp-1(ac) foral n > 1.
The proof is by complete mathematical induction on n:
1. sD, +reDy =5 =w, .
2. sO, +rcD, = as+rc = w,

3. Suppose the theorem is true for all n less than some fixed integer k& > 3. Then wy—7 = sDg_7 + rcDk-2 and

Wi-2 = sDk-p+rcDi-3.
So

*We differ from Carmichael in requiring that (3,2) = 1. If (3,2) = 2, w,(1, (a/2); a,c) = %S, (a,c) for all n, and hence
the former sequence has essentially the same divisibility properties as the latter.
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Wy = alsDg-q +rcDg-o) +c(s0y-p+rcDy-3) = s(aDy_q +cDy-2) +rc(aDy-p + cOk-3) = sDg + rcDy-1q.
Using (F1), (F2) and the fact that (r,s) = 7, we have:

Corollary: (Wn,Dpn) = (r, 0n) = (1, wy), (Wi, Dp-1) = (s, Dp-q) = (s, wp ).
Theorem 2: (Wp,Wnpey) = 1 forall n>0.

The proof is by induction on n.

1. (wy, w,) = (r,s) = 1.

2. (w,, w,) = (s,as+cr) = (s,cr) = 1.

3. Suppose (Wi 1, wi )= 1for some fixed integer k > 2. Let (wy, wi+7) =d. Since wi+7= awg + cwg-1, dlcwg-1,
whence d|c. Now wy =awg_7 + cwg-2, whence d|n. Henced = 1.

Theorem 3: wy,c) =1 forall n > 1.
Proof:
1. w,,c)=1(s¢c)=1.

2. Supposen > 2. Then wy, = awp._.1 + cwp-2. Letd = (wp, c). Then d|aw,,- 1. Hence, by Theorem 2, d = 1.
Theorem 4. (a) lfc is even, then wp, is odd for all n > 1.

(b) Ifaiseven and ¢ is odd, then
(i) If n is odd, then w,, =s (mod 2).
(ii) If n is even, then wy, =r (mod 2).

(c) If a and ¢ are both odd, then
(i) 1f n =0 (mod 3), then w,, =r (mod 2).
(i) f =1 (mod 3), then w,, =5 (mod 2).
(iii) 1f n = 2 (mod 3), then w,, =r +s (mod 2).

Proof: Part (a) isimmediate from Theorem 3.
Parts (b) and (c) follow from (F3) and Theorem 1.

Corollary: 1f riseven, thenw, =0, (mod 2) for all .
Theorem 5: Letp be any odd prime.

(a) fplc, then(p, w,)=1foralln=1.
(b) If(p,c)=1, then p|wp_(pp) if and only if p|r.

Proof:  Part (a) isimmediate from Theorem 3.
Part (b) follows from (F4) and Theorem 1.

REMARK: The only recurring sequences for which p|wp_(p ) for more than a finite number of primes p are
+ Dplac)

Theorem 6: Wm+n = CDp_1Wm + Dpwm+7 forall m=0andn > 1.

Proof: Wm+n = $Dm+n +1€0men-7 (by Theorem 1);

= s(cDmDp-q+ Dm+10n) +rclcDp-10p-7+ DDy, ) (by F5);
= ¢0p_1(sDpm +rcDp-1) + Dy (sDpy 7 +reDpy)
= ¢0p-1Wm * DpwWm+7 (by Theorem 1).
Corollary 1: (Wn, wk) = Wy, Dpk) = (Wi, Dp-k), where n>k =0
Proof: This corollary isimmediate if » = k. Supposen > k > 0. Then

Wp = Wit(n-k) = 0p-k-1Wik + Dp-gwi+1.

Hence if d|w, and d|w, then d| D wi+7. By Theorem 2, (wy, wy+7) = 1. Hence d | D .
Similarly, if d|wp, and d | Dk, then d|cDpg— 7wk . But (Dp_g, dDp_g—1) = 1. So d |wy .
Finally, if d|w and d| Dk, then d |wj, .

Corollary 2: wy|wp if and only if wy |Dp— , where n >k > 1.
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Corollary 2: wy|w, if and only if wy|Dp—x , wheren >k > 1.
Corollary 3: (@) wy|Wpmy if and only if wi| D (m-q1 )k forn > 1.
(b) 1 Wy |D g , then wy |Wpmk whenever m =1 (mod t).

Proof: Part (a) isimmediate from Corollary 2 with n = mk.

Part (b). By (FB), Dy |Dp i for all positive integers n. Then Wy |Dp g, whence wy |W(ne+1 )k for all non-
negative integers 7.

Corollary 4: (a) wy|wa if and only if wy|r.
(b) wy|w3y if and only if wy |rS .
(c) wi|wsy forall k > 1ifand only if wy |r(2s — ar) forall k > 1.

Proof:  Part (a) follows from Corollary 3(a) and the corollary to Theorem 1.
Part (b) follows from (F7), Corollary 3(a) and the corollary to Theorem 1.
Part (c): Suppose that wy |w3x forall k > 1. By Part (b), wy |rSk for all k > 1. In particular, wy |rSy,
i.e., s|ra. Since (r,s) = 1, sa. Let a =sd. We shall prove by complete mathematical induction on 4 that

Skla,c) = dwylr,s; ac)+cl2 —rd)Dk-q(a,c) forall k> 1.
1. dwy+c(2—rd)Dg = ds+0 = a = Sy.

2. dwo+c(2—rd)Dy = dfas +cr) +¢(2 —rd) = a%+3c = So.
3. Suppose that the theorem is true for all integers & less than some fixed integer £ > 3.
St = aSp1+6Sp2 = aldwpq +c(2 — rd)D 2] +cldwpo +¢(2 — rd)D¢-3]
= adWeq +cl2 = rd)(Deeyq — cDp3) + cdwpz +c2(2 = rd)D 3
= adWeq +cf2 = 1rd)D g — ¢2(2 = 1d)D 43 + cdWpz + c2(2 — rd D3
= dfaWpq + cWe2) + (2 — rd)Dpq = dwy+¢(2 — rd)Dy-1q.

Hence if p|w, and p|S,, then p |c(2 — rd)D,-7. So by Theorem 3 and the corollary to Theorem 1, p|(2 — rd)s.
Thus, by Part (b), if wy|wsgforall k > 1, then wy |r(2s — ar) for all k > 1.

Conversely, suppose wy |r(2s — ar) for all k > 1. Since wy|r(2s — ar) and (r,s) = 1, s|a. Then, letting a = sd, it fol-
lows from the first half of the proof that (S, wy ) = (25 — ar, wy ) for all k > 1. Hence, by Part (b) and the corollary
to Theorem 1, if wy |r(2s — ar) for all k > 1, then wy w3, forall k > 1.

Lemma 1: wy|wo forall k > 1if and only if wgwg+7|rforall k> 1.

Proof: The "if" partis immediate by Corollary 4, Part (a).

Suppose that wy |wo for all k > 1. By Corollary 4 (a), wy |r and wg+7|r. But by Theorem 2, (wy, wi+7)=1.
Hence wy wi+1|r.

Lemma 2: 1f r# 0and (a,r) = 1, then wy |wo for all k only in the following cases:

(@) r=s=21 a+c =1;in which cases { Wp } = £ {7, 7, - }

(b) r=2%1,s=71,—a+c = 1 in which cases { Wn } =t { 1,-1,1,-1, } .

(c) r=42 s=7F1,a=c=—1;in which cases Jz Wy, } =t {2, -1,-1,2, -1, -1, - }

(d) r=42 s=%1,a=1,¢=—1;in which cases .{ w,,} =z {2, 1,-1,-2-1,1,2,1,—1,-2,—1,1, - } )

Proof: Suppose wy, (1,s; a,¢) is a sequence for which wy |woy for all k. Then, by Corollary 4 (a), wy |wo forall
k Since (s,r) =1, s =w, and w, |r, we may conclude thats = 1. Now w, (1,7, a,¢) = —wp(-r, —1;a, ¢) forall n. So it
suffices to consider the case where s = 7.

Since w, |r and (w,,r) = (a +cr, r) = (a,r) = 1, w, = £1. We shall prove by complete mathematical induction on n
that wy, (1,5 a,c) = (—1)"* 1w, (—r,s; —a,c) for all n > 0:

(M) wylrs;ac) =r=(-1)(-r) = (=1)'w,(-r,s; —a,c).

(2) w,(rs;ac) =s = (—1)*(s) = (-1)*w, (-1, -a.c).
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(3) Suppose that the theorem is true for all integers n7 less than some fixed integer k > 3.

wilr,s; a,c) = awg-1(r,s; a,c) +cwg-o(r,s; a,c) = (- 7)kawk_7(—r,s,' —a,¢) + (- 1)k ICWk_Q(—f,.S‘,' —-a,c)
= (- 7)k+7[(—alwk_1(—r,s,' —a,c) +ewpnl-rs;—achl = (=1 Tw (=5 -a,c).
Hence it suffices to consider the case where w, = 1.

CASE |: Suppose thata > 1.
Thenc¢ < —1. For were ¢ > 1, we would have wj+7 >w; > 1far/ > 3, contradicting the fact that w; < || for all /.
Alsosincer=(1—a)k, 1—a<c<-1Soa+c>1.
(a) Ifa+c =1, itis easily seen that the sequence reduces to { Wo, Wy, - } = { 1,1, - } .
(b) Suppose that a + ¢ > 1. We shall prove by induction on / that w; > w;_¢ fori > 3.

(1) By hypothesis it is true for/ = 3.

(2) Suppose it to be true for/ equal to some fixed integer n > 3. Then wy+7 = awy, + cWn—-1 > wpla +¢) >wp.
But this means that the w;'s form an unbounded sequence, which is impossible since w; < Ir| for all /.
CASE Il: Suppose thata <—1.
Sincea+cl|a— 1, eitherc=—7 or0 <c <-2a+1.
(a) Suoposec=—17. Thenw, =a* —a— 7and, sincew,|r, 3> —a— 7<7—a Hencea®> <2 ie,a=—1.

Then r=-2 and this yields the sequence { -2,1,1,-2,1,1, } .

(b) Supposec >0.Nowr=(7—a)/canda+c|r Soac+c*|la—1

Lat+tct < T1-a

Lale+1) < 1-¢?

<l=c_q_..
c+1
Also ac +¢*> = a— 1, whencealc — 1) = —c? — 1. Hence eitherc = 7 or
) 247 2
—71<-a<® 2l
¢ a< oy sletl)+ =

Thus case (b) reduces to the following four subcases:
(i) c=1 Noww,|D,,ie,a+1]a*+1 Sincea® +1=(a+1)(a—1)+2a+ 12 Soa=-2ora=-3.
1. Ifc=T7anda=-2 thenr=3 butw, = —7.
2. Ifc=7anda=-3 thenr=4butw, = 7.

(i) a=—c— 1. Thenw, =2c + 1, r= (c+2)/c and w,|r. Hence 2c> +¢ <c +2. Soc = 1, a case already considered.
(iii) @a=—c + 1. But thena +¢ = 1, a case already considered.
(iv) c=2anda=—5 Thenr=>5butw, = 17.

This exhausts all of the possible cases. The other six sequences mentioned in the theorem are precisely those ob-

tained from the sequences { 1,1, . } and { -2,1,1,-2,1,1, } by the permutations of sign outlined at the
beginning of the proof. )

Theorem 7. I|fr# 0, then wy|wzy for all k only in the cases listed in Lemma 2.

Proof:  We shall prove that if r # 0 and (a,r) = d > 1, then w fails to divide woy for some k. The theorem will
then follow by Lemma 2. Suppose the contrary, i.e., suppose there exists a sequence wy (7,5, a,c/ such that wy|wz
forall & Asin Lemma 2, s = £7 and, moreover, we need only consider the case where s = 7.

Then w,|r and w,|D,, where 0, = a So w,|d. But d|w,, since w, = as +cr. Thus w, = #d and, as in the lemma,
we need only consider the case where w, = d.

Supposea > 0 and d > 0, ¢ < 0 for otherwise the w;'s would become unboundedly large.

Now dfad +c)|r by Lemma 1 and r = (d — a)/c # 0. Hence c(ad +¢)|1— (a/d) and T — (a/d) < 0.

Sincec|7— (a/d), 1 — (a/d) <c < 0. Sincead +¢|1— (a/d), ad + 1 — (afl) <ad +¢ < (a/d) — 1.
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which is impossible since ¢ > 2. Hencea < 4
Sincecdfad +clla—d, a—d <cdfad +c) <d-a
Suppose ¢ < 8. Now acd® +¢*d <d - a

noaled* + 1) < d1-¢?).

. a1 —¢?)
La =z _[,’[72_:’7 =0,
contradicting the fact thata <0 Soca<Oand ¢ > 0.
Now acd? +c?d > a—d.

Loaled® — 1) = —dlc? + 1).

. _dler+1)
nwa = P
Sincea< -1,
erdtd 1
cd* — 17

Lceid+d = ced* - 7.
Ldlefe~dl+1] = -1,
Sinced > 1, dlcfc — d) + 1] = 0, whence cfc — d) = —1. Then, sincec # 0 and (¢,d) = 1, githerc > d or¢ =7 and
d =2 Butin the latter case, the inequalities
_ dle* +1)
cd* — 1
imply that a = —7, contradicting the fact that d|a.
Now, sincecdla—d, c <1 —fafd)<1—-a Sol0<d<c<T-(afd)<T~-a
Suppose thata = —d. Thena + cr=—a, i.e, cr=—2aand a|r.
CASEL: r=—aandc=2
Thenad +¢=2 - a* and ad + c|—a Hence eithera=—7 ora=-2
But hoth possibilities are inadmissible since & = —a > 7 and (a,¢/ = 1.
CASE ll: r=-2gandc=1.
Then ad + ¢ = 1 — a® and ad + ¢|—Za But this requires that 7 — a* must divide 2, since (3, 7 — 2%/ = 1, and this is
not satisfied by any integer & Hence a < —2d.
Suppose that d > 2. By Lemma 1, w,w, |1 It foliows that (ad + c)a®d + ac + cd) > a — d.
L a—d < a*d? +2a%cd + acd® + ac® +c2d < a*d? +2atcd +acd® < d*a® +2a*(1— a)d +ad®.
20 < d?a®+2a%(T—ald+ad® —a+d = (d* = 2d)a® +2da* + (d*> — T)a+d < (d* — 2d)a® + 2da*
< g®+2da* = a*(a+2d) < G,

a contradiction. Hence d =2 Then

<a< -1

2—a
c

ad+¢ = 2a+¢ and r =

By Lemma 1, dfad +¢)|r. Soda+2c>a— 2
.'.c>——%a—7>—a~—l.

Hence —a— 7 <c¢ <—a+* 1, i.e., ¢ = —a. But this contradicts the facts that (a,c/= Tanda < —1.
Thus we have verified that there is ne sequence wp, {1, a,¢/ for which r #0, (a,r) > 1 and wy |wox for all &
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CONCLUDING REMARKS

This thearem completes the identification of those sequences for which wy |wok for all & > 7; those sequences
being

P { Dplac) } ; i{ Wn (7,7,'3,0}} ,
where
a+tc = 1; t{w,,(l,—I;a,c/}',
where
—atec = 1 £ {wn (2, ~1;-1,-1}  and t{w,(2 11, -1} .

These sequences, it is clear are precisely those for which wy | W for all integers k > 7 and m = G In fact, an in-
spection of the proofs of Lemma 2 and Theorem 7 discloses that these are the only sequences for which wy |wax

for7<sk<5and { |k | ‘k— 1,2 - } is bounded.
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