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INTRODUCTION 

Ever since the establishment of the Fibonacci Association and its main publication, The Fibonacci Quarterly, 
under the devoted guidance of its founder, the Fibonacci master, Verner E. Hoggatt, Jr., [3] of San Jose State 
University, California, the study of the Fibonacci sequence 

(0.1) Fj = F2= 1; Fn+2 = Fn + Fn+1; (n = 1,2, - J 

has seen a new and rapid development in the last two decades. The impressive list of brilliant mathematicians 
who have contributed is too long to be mentioned here. But the author thinks that the time is ripe for some 
kind of a Dickson-survey of all the splendid results in the Fibonacci Wonderland which has fascinated mathema-
ticians for the last 775 years, since the son of Bonacci wrote his Liber abaci in 1202. 

Together with the study of the original Fibonacci sequence (0.1) went the generalization of these sequences. 
This was a result of pure mathematical curiosity and speculative creativity, without any application to the 
freightening population explosion of rabbits. This generalization could lead into various directions. First-the 
initial values of Fj, F2 in (0.1) could be arbitrarily chosen, and this gave birth to the Lucas numbers, in addition 
to many other step-children. The most reckless, most general generalization, taking us to dimensions beyond 
the imagination or needs of Leonardo da Pisa, would be the following: let 

(j = 1,*,n) 

(0-2) / Fn+V = E biFv+i, (v = 1,2,-) 

Fj = aj 

Fn+V = 

» 
ajf bj e 

n-1 

£ 
i=0 

Z; aj, bj fixed. 

Of course, it is possible to drive this inconsiderateness still further and choose aj, bj from C. But one should 
make a halt somewhere. In a previous paper the author [1,a], and in a joint paper Hasse and the author [1,b] 
have investigated the most simple case of the general generalization of the Fibonacci numbers, viz. 

| Fj = 1, Fj = O (i = 2, - , n), 
(0.3) ] n-i 

i=0 

The author succeeded to calculate Fn+V in a comparatively simple explicit formula. In principle, this is possible 
also for Fn+V from (0.2), by means of Euler's generating functions. The author applied, for the calculation of 
Fn+V from (0.3), the Jacobi-Perron algorithm [1,c], which led him to suggest that the sequence of the original 
Fibonacci numbers should actually be defined by 

(0.4) F.j = 1; F0 = O; Fn+2 = Fn + Fn+1 (n = -1, O, 1, »• A 
While trying to generalize the original Fibonacci number to higher dimensions, one is immediately exposed to 
the danger of losing the royal property of the original Fibonacci numbers, viz., Fm\Fmj<, This damage has not 
yet been repaired for Fibonacci numbers of dimension n > 2, and the author conjectures that this will remain a 
U t o p i a " 358 
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In this context the question arises: what is the natural generalization of the Fibonacci numbers, if any? For 
this purpose, one should look into another direction than (0.2). 

As is known, the generating polynomial for the original Fibonacci numbers is 

( P(x) = x2 - x - 1; P(a) = P(fi) = 0 

from which, by easy calculations, the two well known formulas are derived: 

, '»-sfcf-E("-;- ' ) •• 
(0.6) / a P i=0

 V ' 
„= t,2,:.;(°)Ml 

As is seen from (0.5), a and 0 are units in Q(yf5). Generalizing (0.5), and demanding that the two roots of the 
new polynomial be units, one would suggest that the natural generalization of the generating polynomial would 
be 
(0.7) P(x) = x2 -ax- 7, a e N. 

By a technique which will be developed in the next chapter, one obtains generalized Fibonacci numbers (of 
dimension two) Fan of the form 

( Fa,n - Z in-1-i\n-1-2if (n __ l 2 ^ } 

(0.8) i==0 

\ Fgfn+2 = Fa>r) + aFa,n + 1 • 

For 5= /, (0.8) become the original Fibonacci numbers, as should be. But, alas, we had hoped to arrive at a new 
formuiafor Fn. So the generalization (0.7) does not supply the natural generalization for the original Fibonacci 
numbers, and new horizons must be searched. 

1. THE NEW APPROACH 

In two previous papers [1,d), e)] the author has established a few new combinatorial identities by means of a 
new technique. These identities are of a quite complicated nature, and only a combinatorial master like Leonard 
Carlitz [2] could have succeeded to prove them by elementary tools. The basic ideas of this new technique, to-
gether with a few illustrations, will soon appear in a paper; an abstract [1,f)] of this paper has been published. 
The author doubts not that mathematicians, once they have become familiar with this technique, will come up 
with a treasure of new and interesting combinatorial identities which could probably not be proved with ele-
mentary means. 

A word about its contents. Since the new technique is based on the knowledge of one or more independent 
units in an algebraic number field of any degree n > 2, these units must, of course, be explicitly stated. Now, 
there are many elaborate methods to find the basis (the maximal set of fundamental units) of the multiplicative 
group of units in a numeric, given algebraic number field Q(w), 

I wn +k1w
tl~1 + - + kn-iw + kn = O, 

(1.1) \ 1 

| kj G Z, kj fixed (i = 1, ••'fn). 

The situation is entirely different, if the kj, —, kn from (1.1) are any free parameters. In this case we speak 
about Q(w) = Q(w; ki, —, kn) as a functional algebraic number field. In this case it seems almost impossible to 
state one or more independent units in Q(w; /f;, —„ kn) explicitly (they must not be fundamental). We do dare 
to think that the author, and in a few joint papers the author and Hasse [1,c] were the first pioneers to state 
explicitly units in functional algebraic number fields of any degree n > 2. Of course, if kn = ± 1 in (1.1), then w 
is always a unit. This led to the original generating polynomial (0.5) for the original Fibonacci numbers, and its 
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generalization (0.7), which, as we have seen led to essentially nothing new, but an identity of the numbers 
Fan from (0.8) and a polynomial in 1Ml±^Ja2 +4). For generalized Fibonacci numbers of dimension n > 3, i t 
wi l l be definitely worthwhile investigating the case \kn\ = 1 in (1.1), and the author is sure that, by means of his 
new technique, many new combinatorial- identities can be obtained, and his Ph.D. students are already working 
on this subject. This technique, as exposed in the a/m abstract, proceed as fol lows: let 

P(x) = xn + k1x
n~1 + - + kn.1x + knf kj^Z (i = 1,-,n) 

(1.2) 
PM = 0, R. 

Let Q(w) be the algebraic number field over CL, obtained by adjunction of w to Q. Let further 

j e = a1 + a2w+- + anw
n~~1, 

I a; e Q, (i = 1, - , n) 

where e is explicit ly stated. By means of Euler's generating functions, one calculates first the positive powers of 
e, explicit ly, viz. 

(1.4) 

(1.5) 

Then from 

(1,6) 

am -
hl,m+b2,mW + - + bn,n 

= 7, ••-, n; m = bLm G Q, 

e~m = C1fm+C2,mW+- + Cn,mW" 

cim e Q, (i = I - , n; m = +1, 2, •). 

iwn~1, 

0, 7 , - J 

..n-1 

9i,m 

9l,m+92,mW+- + 9n,mWi 

(i = l,~,n;m = Q, 1,.~) 

n-1 

one obtains, by comparison of coefficients of powers of w, the necessary identities, which usually involve /7's 
order determinant with combinatorial coefficients (or their linear combinations) as entries. Thus, in [1,d)] the 
author obtained the combinatorial identity 

E l m - k - 1 
\2k- 1 +2s 

k=0 

(1.7) 

i=0 

m 

n - 4 - 2i 

i=0 

2s = n - 2m; 

i=0 

4, 5, .» 

2. THE GENERATING POLYNOMIAL 

A polynomial o v e r Z o f the form 

(2.1) Pn(x) = (x-D1)(x-D2l-(x-Dn)-d, n > 2, 

has been investigated by the author [ 1,g)] for the purpose of constructing periodic Jacobi-Perron algorithm, and 
by the author ahd Hasse [1,h)l for the purpose of obtaining n - 1 independent units in afunct ional algebraic 
number field of degree n. In this paper, in order to obtain the natural generalization of two-dimensional Fib-
onacci numbers and a new formula for the original ones, we shall investigate the case/7 = 2 of (2.1). The case 
n = 3 has been investigated by my Ph.D. student Seeder [ 5 ] , for the purpose of obtaining combinatorial identi-
ties. We are now taking the liberty of marking the fol lowing 

Statement. The generating polynomial for the natural generalization of the original Fibonacci numbers to the 
dimension two, has the form 
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FJx) = (x-Djfx-DJ-d; 
( 2 2 ) i DUD2 G Z; d e N. 

Dx > D2; Dx - D2 = 0 (mod of); 

Dx - D2 = 1(2); d t m2; m e Z 

The last two restrictions on f3 M from (2.2) are chosen for convenience sake, as the reader will see later, and 
can, generally, be dropped for the definition of FJx). FwmDx - D2 = 1(2) would follow, since f/|Z7t - D2I 

that d is odd. The restriction d t m2 is convenient in another context; both are not necessary conditions. Since 
Fjx)=x2 - (Dx + D2)x + DXD2 - d, the two roots of F2 Ware 

(2.3) 
Dx +D2 + J(DX -DJ2 +4d = Dx +D2 -J(DX ~D2)2 + 4d 

2 '" ™2 2 
wx , w2 e R; wx > w2 . 

We now prove 
Lemma 1. (Dx - D2)2 +4d is not a perfect square. 

Proof. The lemma holds, as we shall see, even without the restrictions/?! - D2 = 1(2), d t m2. The other 
restrictions of (2.2) must remain valid. We have 

(2.4) Dx- D2 = td, t e Z - | t f } . 

For |f |= /, we have ̂ j - D2)2 = d2, (Dx - D2)2 +4d = d2 + 4df and (d+1)2 < d2 +4d < (d + 2)2. 
For If| > 1, we have (Dx - D2)2 = t2d2, 

t2d2 < t2d2 +4d < t2d2 +2\t\d+ 1 = (\t\d + 1)2, 

(\t\d)2 < (Dx - D2)2 +4d < (\t\d+1)2. 

This proves the Lemma 1 completely. From Lemma 1, we immediately derive 

Theorem 1. The polynomial 

FJx) = (x- Dx)(x- D2)-d; Dx - D7 e Z; d e N; Dx > D2 ; Dx - D2 = 0 (mod of) 

is irreducible over Q (over Z ) . The roots of F2 (x) are real quadratic irrationals. 
Notation 1. The greater of the two roots of FJx) will be denoted by 

, - _. Dx+D2+J(D~^~D2T~4d' 
(2.5) w = wx = — 

For later purposes we shall need the expansion of w as a simple continued periodic fraction. We have from 
(2.2), (2.4), (2.5) 
(2.6) (w- Dx)(w-D2) = d, 
and make the restriction 
(2.7) d f 1. 
Then, as the reader can easily verify, 

i / w-D2 w-D2 Dx-D2 w-Dx _DX-D2 / . 
1 xj x w-Dx (w-Dx)(w-D2) d d d d x2 ' 

_ d _ d(w-D2) ^w_D2 = D i _ D 2 + w _ D i = D i _ D 2 + ± =Di-D2+-L. 
2 w-Dx (w-Dx)(w-D2) 2 l l 2 x3

 2 xx 

We have thus obtained: 

(2.8) „ .[• />. °±Z°l 

If we now drop restriction (2.7), we obtain 
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(2.9) w = [DUDX -DJ ; d = 1. 
If we set 

Dx = I D2 = 0; d = 1, we obtain 

(2.10) } x2-x-1 = 0; w2-w-1 = 0; 

Thus formula (2.9) is valid also for the conditions of (2.10). Formula (2.10) leads, as was mentioned, to the 
original Fibonacci numbers. We return to the original case. As is known, a unit in 

Q(w) = Q(y/(Dl -D2)2 +4d 

6l = Xl*2 = J^~D~J2 

(w-DJ2(w-D2)2 

d2 h 

is given by 

and since, from (2.6) 

we obtain 

(2.11) e r l = e = (—--°-^- is a unit in Q(w). 

tfd=l,w-D2 e QM, so that 

(2.11a) w~D2 is a unit in Q(w), d = J. 

We shall, for the time being, eliminate the case tf = /, but shall return to it later. That 
(w-D2)2 

e = — — , e > 1 
d 

is a unit in Q(w) can also be proved directly; we have 

= w2 -2D2W + Dl = (Dx +DJw- DlD2 +d-2D2w + D2
2 

(2 12) \ d d 

u'Ui ] _-D2(Dl-D2) + (Dl-D2)w + d 

thus e is an integer, since Dx - D2 = 0(d). 
We further have 

N(e) = (N(w-D%))2
 = ((wx -D2)(w2 - D2))2 

d2 d2 

H 2 / (°i - f l J ^ V ^ i -D2)2 +4d <DX -D2)-y/(pi -DJ* +4d \ 2 

a \ -2 • - 2 J 
= d~2 -d2 * I 

We shall operate, in the sequel, only with the unit 
(w-D2)2 

d 

regardless of whether e is fundamental or not, though this question could be easily answered. Since e is in the 
ring R[w], we also do not need to construct a basis for Q(w), and shall operate with integers of the form 

(2.13) j3 = x + yw; x,y e Z . 

A last question remains to be resolved, viz.: are there indeed infinitely many real quadratic fields of the form 
Q(sJ(Dx - D2)

2 +4d)l To prove this, let us presume 
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Dx-D2 = 1(d); d ? m\ m e Z , 
( Z 1 4 ) j Dx~ D2 = td; f G Z; t fixed. 
Then 

(Dx - D2)2 +4d = t2d2 +4d. 
Now, Erdos [4] has proved, that for infinitely many n, 

t2n2 + 4n, (tn = 1(2), n ? m2, t, n, m e Z) 

has no square factor. This proves that there are infinitely many real quadratic fields of the form 

Q(sJ(Dx -DJ2 +4d). 

3. THE POWERSOFT 

In this chapter we shall give formulas for the explicit calculation of en and e"n, (n = 0, 1, ••-). This is the cen-
tral result of this paper from which the new formula for the original Fibonacci numbers will be derived. 

We have from (2.12) 
= -D*(°i -D2> + d + (Dx -D2)w 

6 " d 

and with Dx - D2 = td, 'we obtain 
(3.1) e = -D2t+ 1 + tw. 

From w2 =(D, +D2)w- DXD2 +d, we obtain, with Dx = D2 + td, 

(3.2) w2 = -(D\ +D2dt) + d + (2D2 + dt)w. 

One calculates easily from (3.1), taking into account (3.2) 

(3.3) e2 = - D2 t(dt2 +2) + dt2 + 1 + (dt3 + 2t)w. 

We now denote 
(3.4) en = xn + ynw, n = 0, 1, - . 

With (3.1), (3.3) we have 
\ x0 = 1, y0 =0; xx = -D2t+ 1, yx = t; 

( 3 - 5 ) | x2 = -D2(dt3 +2t) + dt2 + 1; y2 = dt3 +2t. 

From (3.4), (3.1), we further obtain 

e"+i = e".e = (xn+ynw)[(-D2t+ 1) + tw] . 

An easy calculation, taking into account (3.2), yields 

en+1 = xn+1+yn+1w = (-D2t+1)xn + (-D%t - D2dt2 + dt)yn 

+ l(-D2t+1)yn + (2D2t + dt2)yn + txn] w, 
hence 

xn+1 = (-D2t+1)xn + (-D2t-D2dt2 + dt)yn, 

( 3 - 6 ) \ yn+l = txn + (D2t + dt2+1)yn . 

From the second formula of (3.6) we obtain 

Vn+2 = txn+1 + (D2t + dt2+ Dyn+1, 

and substituting here the value of xn+i from (3.6), 

Yn+2 = (-D2t+1)txn + (-DJt2 - D2dt3 + dt2)yn + (D2t + dt2 + Dyn+1-

Substituting here the value of txn from the second formula of (3.6), we obtain 

Vn+2 = (-D2t+1)[yn+1-(D2t + dt2+ 1)yn] + (-D^t2 - D2dt3 + dt2)yn + (D2t + dt2 + Dyn+1, 
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and, after simple calculations 

(3.7) yn+2= (dt2 + 2) yn+1-yn. 

From (3.6) we obtain 
Xn = f lVn+1 - (D2t + dt2 + 1)yn] , 

or, raising the index by one, 

Xn+1 = j lyn+2-(02t + dt2+ 1)yn+i], 

and substituting here the value ofyn+2 from (3.7), 

*n+i = j Hdt2 + 2>Yn+l ~yn- (D2t + dt2 + 1)yn+il 

xn+i = j [(-D2t+ i)yn+i-yn] 

xn+1 = -D2yn+1 + f1(yn+i-Ynl 

Xn = D2yn + t~~ (yn-Yn-l)-

en = [-D2Yn + t~1(Yn-Yn-l)] +YnW, 

(3.8) 
Thus 

(3.9) 

and, to complete the calculation of e we have to calculate/„. This is done by means of the recurrency formula 
(3.7). We obtain, taking into account the values of y0 andy% from (3.5) 

OO OO CO CO 

E Ynun = YQ + Y1U+ E YnUn = tu + E yn+2u
n+2 = tu + E [(dt2 + 2)yn+1 - yn]u

n+2 

n=0 n=2 n=0 n=0 

tu-u2 E Ynu
n + (dt2 + 2)u E yn+7u n+1 

n=0 n=0 

= tu-u2 E ynu
n + (dt2 + 2)u\\ E Ynun \-Y0u

L 

n=0 \\n=0 j 

t"-"2 E ynu
n + (dt2 + 2)u £ ynU". 

n=0 n=0 

We have obtained, 

E ynu
n = tu-u2 E + (dt2 + 2)u E y„un 

n=0 n=0 n=0 

(3.10) E Ynun tu a = dtz + 2. 
n=0 1-au+u* 

From (3.10) we obtain, for u sufficiently small 

E Yn"n = tu Y* (au-u2) 
n=0 k=0 

(3.11) E Ynun = t E ukH(a-u)k. 
n=0 k=0 
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Collecting on the right side of (3.11) powers of un, we obtain, by comparison of coefficients, taking k = n - 1, 

y w - f E . M / ( n~!~'' )an~1-2'\ 
i=0 

and finally 

<3-12> Vn = t £ r - / / ( " - ? - ' " yj(dt2 + 2)n'1-2i. v0= 0; V1 = t; n = 2,3,- . 
i=0 

From (3.8) and (3.12) we now also obtain the value of xn , viz. 

*n = -D2t E M / ( " - / - ' ' )(dt2 + 2)n'1'2i 

i=0 

(3,13) < 

i=o - ^ 

xo = 1; x1 = -D2t+ 1; x2 = -D2(dt3 + 2t) + dt2 + 1; n = 3,4, - . 

We shall now proceed to calculate the negative powers of e and use a Kunstgriff for this purpose. We remember 
that 

w = w-i; w-f +w2 = Di + D2. 
We further have 

-n = T = xn+ynw2 

xn+ynw (xn+ynwi)(xn+yn\N2) 

Now, the whole trick consists of 
N(en) = N(xn+ynw) = (xn+ynw^Hxn+ynw2); 

butN(en) = (N(e))n = 1n = 1, so that 
e~n = xn + ynw2 = xn+yn(D1 + D2-w) 

e~~n = xn+yn(D1 + D2)-ynw. 

But from (3.8), xn = -D2yn + t~1 (yn-Vn-ilso that finally 

(3.14) e'n = D^n + t'Uyn-Yn-l) ~~ VnW Vo = 0; y1 = t; n = 2,3, •••/ / „ from (3.12). 
The reader will easily verify that the norm equation of en yields 

(3.14a) x2 + (D1 + D2)xnVn + (D1D2-d)y2 = I 

4. THE "NEW" FORMULA 

We return to the generating polynomial of the original Fibonacci numbers, P(x) = x2 - x - 1. We have 

(4.1) P(wJ = P(w2) = 0; wx = - : j ^ , w2 = - z ^ - , w2- w- 1 = O; w2 = w+ 1; w = wx 

In Q(w), w is a (fundamental) unit; we shall calculate its non-negative integral powers. 

(4.2) wn = gn + fnw; g0 = 1; 91 = 0; f0 = 0; f1 = I 

Multiplying in (4.2) both sides of w, we obtain 

wn+1 = gnw+fnw
2 = gnw+fn(w+ 1), wn+1 = fn + (gn + fn>w = 9n+i + fn+iw 

9n+1 = fn; fn+1 = fn+9n = fn + fn-1 
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(4.3) wn = fn.1 + fnw 

(4-4) fn+2 = fn + fn+1-

Since w2 = g2 + f2w = 1 + w,m have f2 = 1, so that (4.2), (4.4) and f2 = 7 yield, 
fn+2 = fn + fn+1r fj = f2 = V. n = 1,2,-

which shows that the fn are the.original Fibonacci numbers, 

(4.5) fn = Fn; n = 1,2, • . 
If we set in (2.2) 

Dx = 1; D2 = 0; d = 1; t = 1, 

we obtain, from (2.11), (3.4), (4.2), (4.5) and (3.12) 

en = w2n = xn + ynw = g2n+hnw, F2n = yn> 

•2i 
' - " [ i I ° 

i=0 

(4.6) F2n = £ M / ( n~1i~i) 3"~1 

since dt2 + 2 = 3. 

(4.6) is the new, and surprising, beautiful formula for F2n; F2n+1 «s t n e n obtained from the relation 

F2n+1 = F 2 n + 2 - F 2 n = [ i (-1)>3"-2i( "71 ) ) - £ (-V1 (n-1-i\3n-1-2it 

\i=0 j i=0 ^ 

so that, by the new approach to Fibonacci numbers, we obtain the sequence (which is, of course, identical with 
the original one) * 

Fi = F2=1; F2n = j:(-1)i[n-1
j-'

i)3n-1'2i; n = 2,3,-; 

i=0 
(4.7) 

= 1,2, F2n + 1 =( E (-I? ( V ) I"'* j " ( Z (-W ["'J"' ) I"'1"' W I 

In (4.7), for/7 = 7 in F2n+1, w e nay e t 0 d e f i n e ( °0 ) = 1 . 
From (4.3), we have, with (4.5) 

wn = Fn-1 + Fnw. 
Now. since w2 - w - 1 = 0, we have 

N(w) = -1, 
so that 

N(wn) = (_Vn = M(Fn__1 + FnW) = {fn_1 + FnWl)(Fn,1 + Fnw2) 

= F2_1 + (w1 + w2)Fn.j Fn + F2w1w2 = F2_f + Fn-fFn-F
2 

= Fn_7 + Fn-i(Fn+1- Fn-iJ- Fn = Fn-iFn+T - Fn , 

Fn - Fn-iFn+j = f-1)n , 
a well known formula. 

The analogue for the generalized generating polynomial F2(x) from (2.2) is obtained from (3.4), with N(e) = 

1> v»z- ? , , , , 9 
x* + (Dr + D2)xnyn + (D1D2- d)y* = I 

which solves the Diophantine equation 

x2+(D1 + D2)xy + (D1D2-d)y2 = 1, 

Oj > D2; Dj- D2 = 0(d); d, D1f D2 e Z; d > 1. 
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5. ALTNEULAND*-AN EPILOGUE 

The new Formula for the original Fibonacci numbers, as the author has called it with unforgivable self-styled 
praise, is actually an old formula which could be achieved by elementary means, as was kindly remarked to the 
author in a private correspondence by Professor Verner E. Hoggatt, Jr., of San Jose State University. Here is 
the way it can be obtained from the original Fibonacci numbers: 

F2n+2 = F2n+1 + F2n = F2n + F2n-1 + F2n = 2F2n + F2n.7 = 2F2n + F2n - F2n-2; 

(5.1) F2n+2 = 3F2n - F2n.2 . 

Eq. (5.1) leads to the generating polynomial 

(5.2) x2-3x+1 = 0, 

and from (5.2) the new formula for F2n+2 is easily obtained by the use of Euler's generating functions, as used 
in this paper. But finding a new formula for F2n+2 was not the idea of this paper, as was pointed out in the 
introduction. The aim was two-fold-first finding the most natural generalization for Fibonacci numbers, of 
which the original ones would be a special case; second-to demonstrate the powerful use of units to finding 
combinatorial identities, since, after all, what we have found-and again, this may be considered Altneuland—is 
the combinatorial identity 

(5.3) £ ( 2n 7 -'') - £ (- iy ("- ; - ' ' ) 3n- 1-2i . 
i=0 i=0 

Besides the technique used in this paper, the author has found a new, and, as he believes, powerful different 
technique by using units in algebraic functional fields of any degree for finding new combinatorial identities of 
higher dimension which surely cannot be proved by elementary combinatorial means. These new results will 
appear in a book by the author which is now in preparation. 
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******* 
LETTER TO THE EDITOR 

Dear Editor: 
I am teaching a survey course at the Pennsylvania State University. After two days of studying the elementary 

properties of the Fibonacci sequence, I asked my class to write a poem about Fibonacci. One very talented 
student submitted the following: 

FIBONACCI'S PARTY 
by Cynthia Ellis 

The great mathematician Fibonacci 
Went out to the market and bought a Hibachi. 
He decided to give a small Bar-B-Que 
For himself, his wife, and a good friend or two. 

So he called his friend Joe and he asked him to come 
With a small jug of wine or a bottle of rum. 
"My wife (one) and I (one) make two" figured he, 
"And with Joseph attending, the total is three." 

But then the telephone rang in the hall: 
His parents would be there, making five guests in all. 
And his wife told him also her parents were coming. 
With sister Loretta—now eight was his summing. 

But, oh, he'd forgotten Joe's girlfriend Eileen. 
With her and her family the total's thirteen. 
And Loretta brings friends to wherever there's fun. 
So he counted it up and he got twenty-one. 

Just then he remembered the neighbors next door. 
They'd certainly be there to make thirty-four. 
And then his club's football teams pulled in the drive. 
And he tore at his hair as he thought "Fifty-five!" 

While out in the street he saw line after line 
Of neighborhood moochers to make eighty-nine. 
And 'round from the alley there came at a trot 
His boss and co-workers, the whole bloomin' lot. 

Fib went to the gameroom and sat on the floor 
And figured the total as one-forty-four. 
So he crawled to the bar and swalled a dose 
And started to wonder how three grew to gross. 

So he pulled out his list and he started to count, 
Carefully writing down every amount. 
And discovered the sequence that now bears his name, 
Thanks to the party where everyone came. 

I hope you like the poem and decide to publish it. 
Richard Blecksmith, Mathematics Department, 

Pennsylvania State University, University Park, Pennsylvania 16802. 


