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INTRODUCTION

The number of ~-combinations of { 1,2,-,n } with no two consecutive integers in a combination is

( n—k+1 )
k
while the number of such restricted “circular” k~-combinations, that is when 1 and n are also considered as con-
secutive integers, is
n n—k
n—k ( k )

These are two well known examples of restricted combinations given by Kaplansky [1943] as preliminary prob-
lems in his elegant solution of the “probiéme des ménages.” Some other examples are given by Abramson
[1971], Church [1966, 1968, 1971] and Moser and Abramson [1969a, b].

In this paper, generating functions and recurrence relations are given for a large class of restricted combina-
tions. This method seems to be a more unified approach than using combinatorial arguments such as those of
Moser and Abramson [1969a] whose main resuit is obtained here in Section 7 as a special case of a more gen-
eral result.

We take a k-composition of an integer n to be an ordered sequence of non-negative integers ay, aa, -+, ak,
whose sum is n. A one-to-one correspondence between the k-compositions of » with each summand a; > 0 and

the (k — 7)-combinations of { .2 ,n—-1 } is obtained by representing the combinations and compaosi-
tions by binary sequences, see also Abramson and Moser [1976]. Hence there is a correspondence between re-
stricted combinations and restricted compositions. Also, there is a correspondence between “circular’” combina-
tions and “‘circular’ compasitions.

A k-composition of n may be interpreted of course as an occupancy problem of distributing 7 like objects in
k distinctcells, with a; objects in cell i Further a k-composition, ay, a2, -, ax of n corresponds to an n-combin-
tion, with repetitions allowed, from ‘ 1,2 -,k } with the integer / appearing a; times. Also since every bi-
nary sequence corresponds to a lattice path we have a 1:1 correspondence between lattice paths in a rectangular
array and combinations. For example expression (2.3) of Church [1970] is case (L) of Section 3 here. Some re-
sults on combinations which have been obtained by Church and Gould [1967] by counting lattice paths have
been generalized by Moser and Abramson [1969 b] and can also be derived using our approach here.

Sections 1 to 5 deal with linear compositions and combinations and Sections 6 and 7 with circular composi-
tions and combinations. Throughout we take, as usual,

( n) - { nl/ln—k)lkl, 0 <k <n
k 0 otherwise.
1. RESTRICTED COMPOSITIONS
A k-composition of n
(1.1) aptagt-+ag =n, a =1,
is an ordered sequence of & positive integers a;, called the summands or parts satisfying (1.1) for fixed n and «.

It is well known and easy to show the number of compositions (1.1) is ( n _ ; ) . Let

k
439
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(1.2) A= (A Az~ Al Ai={an <az < az< -}
denote a given collection of &, not necessarily distinct, subsets A;, of { 1,2,3, - } Denote by F(n, k; A) the
number of compositions (1.1) satisfying the restrictionsa; € A;, i = 1,2, -, k. Thatis

(1.3) Fio, k:A) = 2, 1.

ag+ tag=n
aj€Aj

The enumerator generating function as is well known, see Riordan [1958] provides a general method of
finding F(n, k; A). This is
(1.4) E Fin, k Alx"

n
For example, in the case A;

) no_ k _ k+i—1 itk _ “n—1
) AAED M LA LA Ml A DL
n=1 =0 =1

Iy

a, a,
(Xa” +Xa72+ --')(X327 +X622 F e ) e (x k1 + X k2 + )

il

{ 1,23, - } for all /

To each of the compaositions (1.1) there corresponds a unique sequence of n — K 0'sand k— 7 1's:

(1.5) 000--01 000--01 -- 000--01 000--0

a, -1 a,—1 ag-1—1 ax—1
Note that since a; > 1 in each part of (1.5) the 1 always appears except for the last part where we have a
“missing” 1. Replacing the 1's by 0’s and 0°s by 1’s in (1.5) we have a dual representation,

(1.6) m--10 11110 - 11110 1111

aj—1 as—1 ag-1—1 ax—1
corresponding to a unique sequence of n — k 1'sand k — 7 0’s.

i 2. RESTRICTED COMBINATIONS
We call r integers

(2.1) Xy < Xg < = < X, ,

chosen from { 1,2, -, m} an r-combination (choice, selection) of n. A part of (2.1) is a sequence of con-
secutive integers not contained in alonger sequence of consecutive integers. In a combination (2.1} a succession
isapairx;, Xj+7 with x;+7—x;= 1. Itiseasy to see that if a combination has g parts then it has r— g successions.
For example

(2.2) 1,3,4,5,8,9

is a 6-combination of 10, with parts (1), (3, 4, 5), (8, 9) of lengths 1, 3, 2, respectively. To each combination
(2.1) corresponds a unique sequence of 7 1'sand m — r 0’s

(2.3) €1,82,€3,,6m,
1 if / belongs to the r-combination

where g; =
0 if / does not belong to the ~combination.

For the combination (2.2) the corresponding sequence is
(2.4) 1011100110.

To a given restricted composition (1.1) corresponds by the use of (1.5) a unique (k — 7)-combination
(2.5) X7 < X3 < = < Xgg

of n — 7 such that
(2.6) X1 =487, N—Xg-17 ak, Xi+1—Xi = ajr7, (= 1,2, k=2.
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Hence F(n, k; A)is the number of combinations (2.5) satisfying the restrictions

(2.7) X1 €A1, n—Xyq1 €Ak, Xip1—xi€A;, =12 -, k-2.

For convenience, lettingn ~ 7=m, k— 1=r, F{m + 1, r+ 1; A) is the number of combinations (2.1) satisfying
(2.8) X1 €A1, nN—=X,€ Ay, Xip1—Xi€A;, i=12,r-1,

where

(2.9) A=1(Aq1, Az, -, Ayl A = {a,-; < ajp < - }, i= 1, r+1

are the given restrictions,
3. EXAMPLES OF RESTRICTED COMPGQSITIONS AND COMBINATIONS
Denote by F(n, k; hy, p1; h2, p2; - hi, pi) the number of k-compaositions of p satisfying the restrictions
(3.1) 1< hj <a <p;, forfixed hjp;, i=1 - k.

Using thesieve formula or the enumerator generating function (1.4) with A; = { hi, hi+ 1, hi+2, -, pj } .
i=1 -, k

(3.2} Fink hq,p1 - hi, pic) =( 5 —khj;(— ' )

k
S (—Hj *(""h+k~j-7-(p"x_hi,x)_{pl'z_h/'z}—"'—(p/j"hil-/\
D>

with # = Ay + -+ hy and the summation = * taken over all -comhinations i1 <ip<--<ijof { 1,2 -, k}.
We consider now some special cases.

(A) The number of compositions (1.1) satisfying 7 < h; < a;, i= 1, -, k isthecase pj=n,i=1, -, k of
(3.2), ,
Fln, i by, 0o bien) = (7K =11 hz =L
{B) The number of compositions (1.1) satisfying 7 < a; < pj, is the case 4; = 7 for all /, of (3.2) which is
k
. R = -1 i * — ] —p; —pj — - —pj.
Fin, k L,pg, .1, 01 —(\ Z_,) +Z (—U’E (n p,lk—p,f p’/>
j=1
the summation = * taken over all jcomhinations /, </, < --< ij of k.

(C) The number satisfying 7 <t <a; <w forall/is the case h; = ¢, p; = w for all

k .
Fln, k:t w; -t w) = Z (__”/'( f\( n—kit— 7)/‘:/_(1'7—W— 1)—1 )
P

while
(D) the number satisfying 7 < t < g; is (C) with w=n or (A) wirh h; =1,

CF P = (n—k(t—1)~1
F(n/k/t/nl‘“/t/n)_( k— 1 )

(E) The number satisfying 7 < a; <w is (C) with t = 7 or (B) with p; =w,
k
. P - |k n—jw-—1
Fin k1,55 ) = 3 (-1 | )( )
i=0

In the case w = 2 it is easy to abtain another expression for this number, ( n fk) , 80
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k
i K\ fn—21—1\ _ k )
Z”) (/)( k—1 ) (n—k, g
=0
Corresponding restricted combinations. We now give the corresponding restricted combinations to the.above
examples using the correspondence described in Section 2. The number of r-combinations (2.1) of m satisfying
forfixed 7<hj<p;j<m,i=1,2 -, r+1 the conditions

(3.3) /77<X7<p7, m—{p,+7—7}<x,<m—(h,+7—7)
and
(3.4) hit1 < Xj41—Xj < pje1, (=1,2, -, r—=1

isequal to Fim + 1, r+1;hy,pq; -, hre1, pr+1) We consider now some special cases.

(F) The number of r-combinations satisfying conditions (3.4) only is obtained by putting h7 = hyry = 1,
P1=Prry=m

(G) The number of combinations satisfying

h; < xq, 1 <x, <m—="(hp7-1) and hit1 < Xjgp—=Xi, 0 =1, ,r—1
is by using (A) equal to
m+r+7——h7—h2—---—h,+7)
P .
(H) The number satisfying hjr7 < xje7—X;, i=1, -, r— Tis (G) withhy =~y =1,
( m+r— 7—h2—h3—-~-—h,)
(1) The number satisfying r :
X1 < p1, Xp = m—{ppe7—1) and Xit1 = Xj < pirg, F =1, «,r—1

isequal to Flm + 1, r+ 1,1, pg, -, 1, pr+7) while the number of combinations satisfying xj+7 — xj < pj+7
i=1, -, r— 1, is given by the expression in (B)withn — 7=m, k—T=r, andpys =ppr7=m.
(J) The number satisfying

(3.5) t<x;<w, m-(w-1)<x,<m-(w-1)
and
t < Xjpp—xi <w, =1, r—1

is given in (C)withn —7=m, k- 1=,

rt1

3 -1/ <r+1) (m—(r+7}(t— 7l+/'(t—-w—1))
J r
j=0

(K) The number satisfying (3.5) only is equal to (3.2) with

n—1=m, k—=1=r hy=hys=1 and P1=Pre1 =M,
r—1
> - (r— 7) (m—(r-— Mt~ 7)—/(7+w—t))
/ r
j=0
(L) The number satisfying t <x;j+7 — x;, is (K) with w=m, or (H) withho=hz=--=h,=t,is

r

(m-— (r—1)(t—1) )
while in the case t =2, no two consecutive elements in a combination, the above reduces to the familiar number

(")

(M) The number satisfying xj+7 — x; < w is (K) witht =17,
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r—1
i r—1 m — jw
z (7))
j=0
4. COMBINATIONS BY NUMBER AND LENGTH OF PARTS

Using correspondence (1.6) the number of (n — kJ)-combinations of n — 7 with the length of each part less
than or equal to w — 7 is given by the expression in case (E) of Section 3. Puttingn=m + 17, k=m —r+ 1, the
number of -combinations of m with each part not greater than w — 7 is equal to

m-r+1

(4.0) 3 (_7)i<m—ir+7)(mm—_i:v)'

=0
Mare generally we consider the following” Given a set of ¢ restrictions
(4.1) A=(Ar - Aqh  A={2<as<ap<-},
denote by Fq(n, k; A) the number of k-compositions of 7 such that,
(4.2 a) aj; € Aj, j = 1,2, -, q, for some g-combination /; <ip < - <ig of .{ 1,2 -k } .

(4.2 b) aji = 1, forthe remaining & — g indices /.
Then .
4.3) Faln, k:A) = (X ) Fln—k+0,9:4)
or
(4.4) Foln, k:A) = ( £) Fin-k 8, where B = (81, Bg),

g { 1<a1—1<ago-1< ’} j=1,,q.
Let a k-composition of 7 be given and suppose exactly g of the a;,
g 8ig. s gy, i1 <ip < <lg,

are each > 2. Using (1.6), to this k-composition of n corresponds a unique (n — k)-combination of n — 7 with
exactly g parts, the length of the /'th part (reading from left ta right) being a;. — 7, /=17, 2, -+, q. Hence
Fqln, k; A) is the number of (n — k)-combinations of (n — 7) with exactly g parts, the length of the j1 equal
toaj € A;, =14

For convenience putting k =m — r+ 1, n=m + 1, the number of ~combinations of m with the length of the
7% part equal to aj € Ajisby substituting in (4.3) and (4.4), equal to

(@.5) Fatm+ .m—r+1:4) =( M 2741} Flrtg, g0 A)
or
(4.8) Fglm+1,m—r+1;A) = ( m ;”L ! ) F(r,q;B), B qgivenin (4.4).

For fixed 7 <h; < p; <m and reading the parts from left to right it follows that the number of ~combinations
of m having exactly g parts (or r — g successions) and satisfying the restrictions,

@.7) hj < length of the /? part < p;, i =1 -,4q,
is equal to
(4.8) ( mort ) Flr, a:h 1, p1; - hg pgh

We consider now some special cases of (4.7). The number of combinations with exactly g parts such that the
length of each part is greater or equal to ¢ and less than or equal to w is the number (4.8) with h; = ¢, p; = w for
all/,

(4.9) ( m )i (—7}/’( 7)(r—q(r— Hzlzt’—w—l)— 7> ,
j=0

while the number with each part > t is equal to
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(")

and the number with each part <w is

(@.11) (m;"*’)ig T

Summing (4.11) over all ¢ > 7 and using Vandermonde's Thearem, the number of combinations with each part
< w {and no restriction on the number of parts) is equal to

m-rt1

(4.12) =Zo (_;')f(m—jr+7) (m—mj/_wr+ 7))

in agreement with (4.0) where each partis <w - 1.
Thus we may enumerate a large class of restricted combinations using the above method. One further example
is that each part is of even (odd) length while another is that the length is a multiple of a fixed number,

5. BECURRENCE RELATIONS
Denote & restrictions Ay, -, Ag by

(5.1) AK = (Aq, -, Ar), A; = { 0 < a1 <ajp< } , P= 1k
Then

(6.2) Fln kA¥)= S 1= > = > Fln-a k- 14K

ayt--tag=n aE Ay arttag-1=n-ax  akSAk

a;j€ Aj ajg<n ak<n
For the particular restrictions 7 < h; <a; <p;, i.e.,
(5.3) L s T
we have
(5.4) Fin, k AK) = D Fln—ag k—1;AK7)

hg<ax<pk

= Fln—hg k= 1A 6 D Fla—1—j k- 1;A%T)
h<j<pi~1

= Fln—hy, k=1, A5 T)+ Fln— 1, k: A%) = Fln— 1 pg, k— 1:4%77),
(Fin, kA% = 0 n<0)

with Fin, k; AX) the same as F(n, k; p 1, W1, Pk, hi) of (3.2). In the case #; = t and p; = n, the number of
compositions with each part of length not less than ¢ denoted by Flnk: > t)is

n-{k-1)t
(5.5) Fln, k>t = E Fin—jk—1->t)=Fln—t k-1 >t)+Fln—1k > ).
j=t

Denoting by F(n, k; < w) the number when 7 < a; < w, and using (5.4) with ;= 7 and p; = w for all j,

w
(5.6) Fin, k' <w) :Z Fin—j k—1<w)=Fn—1k—1,<w)+Fin—1k <w)—Fln—-1—-w, k—1,<w)
=1
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If we wish to consider compositions of n with given restrictions but with the number of parts not specified,
then of course we simply sum over k. That is

n
(5.7) Gin;A) = 3 Fin, k: AK).
k=1
The generating function is

}“ Gln A" = Z (T 4 )12 4 )21 4222, ) Ok k2,
-
k

n

For example, the number of compositions of » with each part not less than ¢, is by summing the expression in
(D) of Section 3 over all &,

n

N

Z (n—klit_—;)——l)

k=1

—_—

(5.8) Gln;=>t)

and satisfies the relation
(5.9) Gln;>t) = Gln—t;>t)+Gln—1;,>t).

In the case t =2, G(n; > 2) is the (n — 7)™ Fibonacci number, since G(n; = 2)=1 oreach ofn=223 The
number with each part of length not greater than w < n is by summing the expression of (E) in Section 3 over
all &,

n-w k
. - N j [ k n—jw-—1
(5.10) Gl <w) = 5 Y -1) (/)( )
k=1 j=0 ‘ '
and satisfies the relation

w
(5.11) Gin; <w) = Z Gin—ir<w) = 2Gln—1<w)—Gln—1T—-w;<w).
=1

n
z]
. — n—1
Fin;<2) = Z ( ; ) ,
=0
and the above relation reduces to G(n; < 2)= G(n — 1, < 2) + G(n — 2; < 2), G(n; <2) being the (n + 1)
Fibonacci number since G(n: < 2)=1,2 forn = 1, 2, respectively.

We may obtain relations for the number counting restricted combinations by considering the number
Fln, k; A¥) which counts the corresponding restricted compositions.

In thecase w =2,

6. CIRCULAR COMPOSITIONS AND COMBINATIONS

A (linear) composition (1.1) can be seen as a display of the integers 7, 2, -, nin a line, with k — 7 “dividers,”
no two dividers adjacent, which yield the & parts:

(6.1) 1,2 -,az/a;+1,a7+2 -, ay +ag//ar+ttag-1+1, -, n.

The length of the i part (from left to right) is equal to a;. For example the 4-composition of 9
(6.2) 2+3+1+3 =9

is seen as

(6.3) 12/345/6/789.

Analogously, a circular k-compaosition of n is a display of 7, 2, ---, nin acircle with £ ““dividers,” no two di-
viders adjacent, yielding k parts each of length greater or equal to 1. We may illustrate a circular k~-composition
of n as
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daq as dk
6.4) bb+1,,n—1,n12 «,c/c+l,c+2 ~,ctas//o—ag, ~,b-2,b-1/
1st part 2nd part kth part

placed on a circle in a clockwise direction with the integer 1 always belonging to the first part, i.e.,

c>1 c+n—(b-1)=a;, a > 1
Clearly the number of circular k-compositions (6.4) is equal to

-y

. aqttap=n
For example,
9 ! 7 9 1 2 N\ ! 2
8 2 ~ 3 9 3
(6.5) 7 3 8 4 8 4
6 4 7 5
/ 5 7 6 5 \ é /
or written as
(6.6) 67891/2345/, 91234/5676/, 12345/6789/,
recpectively, are three of the ( g ) circular 2-compositions of 9.
To each circular composition (6.4) there corresponds a unique sequence placed on a circle in a clockwise
direction, .
6.7) 000 --01/000 --01/ - /000 --- 01/

of n — k 0's and k 1's with the 0 or 1 in the first part corresponding to the integer 1 of the composition marked
by “*.” Replacing the 1's by 0’s and 0's by 1'sin (6.7) we have a dual representation of the composition,
*

(6.8) 11 --10/111--10/ - /111 .- 10/

of n — k 1's and & 0's. We will call (6.7) and (6.8) “circular” sequences. For example, the circular sequences
corresponding to each of (6.6), respectively, by use of (6.7) are
* *

00001/0001/, 00001/0001/, 00001/0001/,
and by use of (6.8) are, respectively,

* * *
11110/1110/, 11110/1110/, 11110/1110/.
As earlier, consider the restrictions
A=1(Aq, A ) A= ‘g 1< aj7 < aj2 < - }, i=1 -,k

where each A; is some given subset of { 1, 2,3, } . Denote by C(n, k; A) the number of circular composi-
tions (6.4) witha; € A;, i=1, -, k Thatis

Cin, k' A) = Z aj .
at+--tag=n
ajEA[
Then the generating function'is,

2 Cln, kA" = (377)(377 +a72Xa72+---)(X327+X622+--~)(X637 +X632+"') “'(Xakf +Xak2+"').
n

Checking for the case A; = { 1,23 } forall/,
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Z Cln, k: Alx™ = (x +2X2+3x3 +o )x +x2+x3+ ...)k'7 = X(I—X)_Zxk_1(7 -—X)_(k_”
n=k

“T (1)

An example of the use of the above generating function is obtained by taking A; = { hi, hi + 1,hj+2, },
i=1, -, kandlettingh =hq+-+hy,

k . .
E Cln, k;A) = (/71Xh7+ thy+ DAY | G ALy
n=h =2

thy—hx+x) 11— x) 211 = )1

= ("71—/71X+X)Xh Z(kk'fi)xi
i=0

= h;xh+2[h7 (k+/£+1) +(1—-hy) (kk+i )] XNt

i=0

o o h kAT kit g BT
hix +§ k+i+1 (7Y
p

and hence the number of compositions (6.4) with 7 <h;<a;, i=1, -, kis

= h1+‘“+hk )

(6.9) hokin b (k#n=n),

k+n—nh k

We now consider a more general example which includes as a special case (6.9). Given 7 </f; <p; <m, the
number of circular compositions (6.4) satisfyingh; <aj<p;,i=12, -, kis

P1
(6.10) Cln, k;hy,pg; -7 he, pi) = E ar = Z ar Z 7
arte-tag=n ar=hy  az+-tag=n-ay
hi<aj<pj hi<aj<pj
p7
= 2 arFln—ag, k—1:h2,p2; -/ hi, pi/,
ar=hp

where F(n, k;ho, p2; -, bk, px) is given by (3.2). Using the identity

n
6.11) g i (x/-l(-l:;Z—i) _ (x+llz—m ) xx++kl£n_—mm_ (x+kk—n—7)'%(£_/gi’(l-<;7)

= (x+’,(("")+ (X+//(<__n;_7) (m—1)— (”kk—n-,) ‘(H/f—-;n—z )"

and (3.2), (6.10) reduces to
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Cln, k hy,pg; -, hypi!

k—1
_ aisia| ( xtk—hyXtkhi—h; (x+k—pg—1\XFlk=1)(1+pyg)
¥ oz JIIKNI by (xtkopy= XLl T e,

j=0 « x+tk—=hi Xx+tk—py—1
(6.12)
k-1
e [ R R s A G B G 1
/=0
where

h=hytethe, x=n—h+thy—j=(pjs=hjz) == (pj—hj) for j>0,
x=n—h+hyforj=0and the summation 2 * is taken over all f combinations
i1 <ip < - <ii of {2,3, k}
We consider now some of the many special cases of (6.12). The number of circular compositions satisfying:

(A) hj<a;,i=1,2 -, kis(6.12) with p; = n for all j, is the first term of second last expression forj = 0,
n—h+khy 1 n—p+k
n—h+k ( k ) ’

in agreement with (6.9),
(B) a; < pj, i=1, -, kis (6.12) with h;= 7 for all j,

k=1 )
(1) - ) - )]
j=0 -
ol : +pqlk—1)
= Z (_7)/2*[( Z) _ (V;PI) yrpplk= 1 ]
=0

y—p1

where y =n — (p,-, + oo +p,-l.), the summation =~ taken over all -combinations /7 < --- < j; of {2, k} for
j>1T1andy=nwhenj=0
(C) hy<asj<prandt<aj<wfori=223 -, kis(6.12) withh; =t p;j=w,i=2 -,k

k-1
Z (—1)f (k—_ 1 ) [(n—(k— Nt+k—hg—jl1+w—t ) n—(k—1)t—hq)—jl1+w—1t)
Py / k n—(k—1t+k=hg-j(1+w—t)

_ (n—/k— Nt—1)—p1—jl1+w—t) ) n—(k—1)t—1—p7)—jl1+w—1t)
k n—(k—1)t—1)-p7—jl1 +w—1t)

k-1

= s (-1)/ (k/‘_7 )[(n—(k— 1(t- 7)—k/‘(7+w—r)—h1+7')
j=

n-(k-1)(t-1)-j(1+w-t)-h
* ( k—1 7) thy-1)

n—tk—1)t—1)—jl1+w—t)—ps.\ , 1n—(k—1)t—1)—j(1+w—t)—p7—1
-( A 7)+( k— 1 ! )/77] .
(D) t<aj<wiscase (C)withh;=¢t p;=w,
(E) t <a;forallj is case (D) with w=n or case (A) with h; = ¢ for all j,
___n (n—kit— 7))
n—kft—1) k k

(F) a; <w forall/iscase (D) with £= 7 or case (B) with p; = w.
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k-1
5 e (477) (3 - (775007 st

S(E) X e LT ) A (55 () ]

=1

k
n ik n—iw-—1
T2 () (MRTT)
=0
and in the case w = 2 another expression is

n k
i (n —k) ’
see case (E) of Section 3.
To obtain recurrence relations we proceed as follows. Let Ak = (Agq, -, Ag). Thenfork>2,

6.13) Cln, kcAK)= 3 4= Y 3 a7= Y. Cln—ag, k—1,AKT).

aypt--tag=n akE Ak apt-tag-1=n-ak akEAK
aj€EA; ag<n ag<n

This is the same as that for the linear case (5.2) with different initial values. For the particular restrictions
1<hj<aj<pj,ie.,

A =i b+ 1, i} =1k,
we have
(6.14) Cln, k:A%) = D Cln—ag, k-1, A7)
hk<ak<pk

= Clh—te, k=1, AT e D Cln—1-j k=1, A%T)
hi< j<pk-1

= Cln—hy, k— 1A 40— 1, k A%) = Cln = 1= py, k- LAKT),
(C, k A¥) =0, n < 0).

The number of circular compositions with each a; > t, denoted by C(n, k; > t) and given by the expression in
case (E) above satisfies the relation

(6.15) Cln k;=t) =Cln—t k—1,=2t)+Cln—1,k>t).

Denoting by Cfn, k; > w) the number when 7 < a; < w then the expression is given in case (F) above and satis-
fies the relation
w

(6.16)  Cln ki<w) =D Cln—j k= 1;<w)
=1

=Chh—1k—1,<w)+Cln—1k <w)—Cln—1-w, k—1;<w).
Summing (6.15) over all k the number of circular compositions with each part not less than t is
h
2] o
. - n__ n—k(t—1
(6.17) Din; >t) /g e Tk )
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and
(6.18) Diny=t)=0h-t>t)+00h-1>1).

In the case t = 2, the above relation reduces to
Din;=2) = Din=2:22)+0—1,22)

and Dfn; > 2) is the Lucas number having values 1, 3 forn = 7, 2, respectively. Summing {6.16) over all & the
number O(n,; < w) of circular compositions with each part not greater than w is

k
. = n 4 [k n—iw—1
(6.19) Din;<w) =% 23 =1 (F) ("7 7)
k=1 =0
and satisfies the relation
w

(6.20) Din;<w) = 3 Dln—j;<w).
=1
Inthecase w=2, D{n; > 2} is also the Lucas number with Dfn; > 2) having values 1, 3 forn = 1, 2, respectively,
Given a set of ¢ restrictions
A =(Aq, -, Ag), Aj ={ 2 < a1 < a2 < },
denote by Cqfn, k; A) the number of circular compositions (6.4) such that
(a)a,-j € Aj, j = 1,2, -, q for some g-combination
i1 < iz < - < iy of {7,2, k}
{b) a7 =17 for the remaining k — ¢ indices /.
Then by partitioning the compaositions into those with a; = 7and ay > 7

(k;1 )F(n--k+q,q,'A)+ (’;:;)L‘(n—kﬂ],qi/”

(kq—1) Fin -k q,8) + (,z: ; )C(n~k,q,-3)+‘(";:;) Fln—k g B)

(5) Fn-k a8+ (E27) cln-ka:8),

6.21)  Cyln, k: A)

1

h

where
B = (B, -, Byl By = {7<a,-1— 1<ajz- 7<---} ,i=1 -, q

and Fin, k; A)is the number of restricted (linear) compositions discussed earlier.

7. CIRCULAR COMBINATIONS
A circular k-combination of n is a set of k integers

(7.1) X7 < x2 < o < Xg
chosen from the integers 7, 2, --, n displayed in a circle. That is we consider 7 and » to be consecutive. For
example the circular 6-combination 1, 3, 4, 5, 8, 9 of 9 has parts (891) and (345) each of length 3 while the
same (linear) 6-combination has parts (1}, (345), (89). Of course, the number (Z) of {linear) k-combina-
tions of n is equal to the number of circular k—combinationslof n. A succession here is a pair x;, x;+7 with
Xi+1 = Xi = 7 with n, 7 also considered a succession, As before if a combination (7.1) has g parts it has k — ¢
successions. As before to each circular combination (7.1) corresponds a unique sequence of k 1's and n — & 0's.
(7.2) 51,92,---,9,,
with

{1 if 7 isin the combination,

e; =

0 if 7 is notin the comhbination.
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We shall think of the sequence (7.2) placed on a circle in a clockwise direction. Hence the “‘circular” sequence
(7.2) correspands to the circular sequence (6.7) by agreeing to lete; correspond to the element of (6.7) marked
by a *. To a circular composition (6.4) corresponds a unique circular combination (7.2) with
n—(xxk—xy) = ag
Xi+7—x;=a; for =12, k-1.
Thus the number of combinations (7.1) satisfying the restrictions
n—(xxk—x7) € A7 and xjpp—x;€ A; for =12 -, k-1,

where the A; are given by (6.7), is simply the number C(n, k; A) of Section 6. For example the number of com-
binations satisfying

hy <n—(xg—x1) <pg and t < xjpg—x; <w for i=1,2 -, k-1
is the expression of case (C) of Section 6 and is in agreement with Moser and Abramson [1969 a, expression (14)
for cn,k(t; w:hy,p9)].

Using the dual representation (6.8) and (7.2) we have a one-one correspondence between the circular com-
positions (6.4) and circular {n — k)-combinations of n. For example the number of circular (n — k)-combinations
of n with each part of length not greater than w — 7 is.the number of circular compositions with a; < w given
in case (F) of Section 6. Putting n = m and k = m — r the number of circular -combinations of m is

m-=r
73 2 5 e () (o)

in agreement with Moser and Abramson [1969 a, expression (29)].

More generally the number of circular -combinations of m having exactly ¢ parts, or r — g successions, the
length of the jth part (reading in a clockwise direction with the first part that part containing the smallest inte-
ger greater than or equal to 1) equal toa;— 7, a7 € Aj, j=1,2, -, q is Cq(m, m — r; A) given by (6.21).

Foriexample letting A; = ; t+1,t+2 ¢ forall/the number of circular ~combinations of m with exactly
g parts and with each part of length not less than ¢ is by using (6.21), (D) of Section 3 and (E) of Section 6,

(14)  Cqlmm—r;A) = (77 ) Flrg:8)+ (™ 771 Clr, g 8)

_ (mq—r}(r—g(ﬁ—j 1) — 7) 4 (m;i-1 1)( r_cht—”)r—l‘?ﬂ;_—_ﬂ

_ [(m—r r—qft—1)—1 m

(. q ) ( q—1 ) m-—r

The number with exactly g parts each of length not greater than w is obtained by taking B; = { 1,2 -, w }
for all / and using (E) of Section 3 and (F) of Section 6,

(’"q” ) Fir, g;8) + (.”’q’_’,— ") ctrq;8)

(7.5) Cqlm, m—r; A)

r~iw—7)
q—1

1]

3|
liS
—~
3
<
N
L
-~

[
~
\;.
N
~Q
p —
N

m iy m-—r m-—r—i r—iw—1
m-—r Z(..])( i )( q—i )( qg—1 )
i=0
Summing (7.5) over all g we obtain the number of circular combinations of m with each part of length not

greater than w.
.

w2 3 (7 (M)
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in agreement with (7.3) where a part s of length not greater than w — 1
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Fokododoolok

ODE TO PASCAL'S TRIANGLE

Pascal. . . Pascal, you genius, you,
Constructed a triangle of powers of two.
Coefficients, and powers of eleven, by base ten,
A more useful aid, there's never been.

Head, tail, tail, head,

Answers from your rows are read.
Combinations and expectations, to my delight,
Can also be proved wrong or right.

With a little less effort and alittle more ease,

| might have gotten thru this course in a breeze.
So, Pascal . . . Pascal, you rascal you.

Why did you limit it to powers of two?

... Bob Jones
Southern Baptist College
Blytheville, AR 72315

[See p. 455 for “Response.”]



