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In this note, we derive the sums of a number of infinite series, some apparently new, in a rather simple manner.
It is a simple result that
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Then by differentiating (3) with respect to x and y, separately we obtain
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and also the following interesting special cases:
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To obtain analogous alternating sums, we let
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which leads to
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These three latter formulae include the following special cases:
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To obtain a class of sums complementary to (2), we use another simple general method. Consider any product
(finite or infinite)

P =11 (a, +iby), (an, by — real).
n

Then,
b
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Applying (20) and (21) to the infinite products
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The right-hand side of (26) can be explicitly evaluated if either a or Z + z — a is integral. If a is a positive integer,

a1
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If7 +z—a+2=m (positive integer), thena =2+ 2x — m and

arg(z+ 1T (m -2z — 1) = tan—? ta_nw Z tan~! -———y—k
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(the last sum is to be taken as zero if m = 1). Further sums can be obtained by continued differentiatior of all

the previous sums containing at least one parameter. _ '
Some of the sums given here appeared as problems in the Mathematical Tripos. A number of these are glyen
among the exercises in Chapter X1 of T. J. I’A. Bromwich, An Introduction to the Theory of Infinite Series,
MacMillan, London, 1947.
Yedodedohodrde

A NOTE ON THE GOLDEN ELLIPSE

M. G. MONZINGO
Southern Methodist University, Dallas, Texas 75275

in [1], Huntley discusses some of the properties of the golden ellipse; that is, an ellipse Who.se. ratio of the
major axis to the minor axis is ¢, the golden ratio. For example, Huntley shows that tl]e eccentr.lclty, e, o_f the
golden ellipse is 1/</¢. This note is an examination of the golden elflipse as a conic section; see Fig. 1. It will be
assumed that the plane does not pass through the vertex of the cone.

Figure 1

In [2] p. 355, it is shown that the eccentricity is determined by cos a/cos =8, where aand 8 are the angles
in Fig. 1. Furthermore, for ellipses, § < a < 90%:

In Fig. 1, the angle 7y is formed by the intersection of the plane and the cone, in the plane through the axis of
the cone and the main axis of the ellipse (easier seen than said). This angle will be referred to as the angle formed
by the intersection of the plane and the cone.

Theorem. |f aand fare such that sec a = ¢ and csc f = ¢, then a and 3 are complementary, and the plane
intersects the cone ata right angle, forming a golden ellipse. Canversely, if the plane intersects the cone at a right
angle, forming a golden ellipse, then a.and § are complementary, sec a = ¢, and csc 8 = ¢.

Proof. Firstly, sin 8= 1/¢ = cos a=sin (7/2 — a). Therefore, = /2 — a. From Fig. 1t follows that Yy =
7— (a+B). Hence, aand § are complementary and 7 is a right angle.

Recalling that 2 — ¢ — 1=10, o _

cos B = /1 —sin?f = V1= 1/p? = Vg2 — 1)/p> = Jolo? = 1/\/o .
Since cosa = 1/¢, e = cos a/cos = 1/</¢, and so the ellipse is golden.
Suppose that yis a right angle and the ellipse is golden. Then, cos a/cos 8= 1/</¢ and since

w2 7 y=m-la+P),
a and  are complementary. Thus, cos 8= sin a. Now, \/¢ cos a = cos § implies that
¢cos* a = cos® 8 = sina = 1—cos? a.
Therefore, eos® a=1/{¢+ 1) = 1/¢* and so sec a= 1/cos a = ¢. Also,
. cse$ = 1/sinB = 1/cosa = ¢.
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