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Fon 1(uv) = 201 4 (m = 1)Ju™ (m > 1),
so that
Finluw) = 20" T+ (n = 1)" (n=1).
For m=n we get
m—1 2 m—1 .
(6.10) Fomluv) =2 5 (™71 ) +utv) 35 (72 T)(75T) w)
r=0 r=0

In connection with the recurrence (6.4), it may be of interest to point out that Stanton and Cowan [3] have
discussed the recurrence

(6.11) gln+1,r+1) =gln, r+1)+gln+11r)+gln,r

subject to the initial conditions
g(n,0) = g(0r) = 1 n=>0r=>0).

The more general recurrences

(6.12) Aln,r) = Aln—1,r—1)+q"Aln, r—1)+q"Aln—1,r)
and
(6.13) Aln,r) = Aln—1,r—1)+p"Aln, r—1)+q"Aln -1, 1)

have been treated in [2].
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If the relations (10), (11) and (12) are used, it can be shown that the much simpler expressions for the con-
stants in the explicit solution (2) are indeed given by equations (9).
The generating function for the sequence P, is defined by

(13) G = Z x'P, = Z [C1(xR1) +Co(xR2) +C3(xR3)],
r=0 r=0

If we now make use of the summation of a geometric series, then
€y, L2 . _C3
1T-xR; 1-xR2 1—xR3
_ Cil1—xRoNT1—xR3)+Co(1—xR1)(1—xR3)+C3(1—xR1)(1—xR2)
1—x(Ry+Ro+R3)+x2(R1Ry+R1R3+ 32/?3)——X3/?]/?2/?3
which, upon employing the relations (9), (10), (11) and (12), finally reduces to the simple equation

(14) G =

(15) 6= —Il=X



