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The Multinomial Expansion for the case of a nonnegative integral exponent n can be derived by an argument 
which involves the combinatorial significance of the multinomial coefficients. In the case of an arbitrary ex-
ponent n these combinatorial techniques break down. Here the derivation may be carried out by employment 
of the Binomial Theorem for an arbitrary exponent coupled with the Multinomial Theorem for a nonnegative 
integral exponent. See, for example, Chrystal [1] for these details. We have observed (Hilliker [6]) that in the 
case where n isnotequal to a nonnegative integer, aversion of the Multinomial Expansion may be derived by an 
iterative argument which makes no reference to the Multinomial Theorem for a nonnegative integral exponent. 
In this note we shall continue our sequence of expositions of the Binomial Theorem, the Multinomial Theorem, 
and various Multinomial Expansions (Hilliker [2 ] , [3 ] , [4 ] , [5] , [6] , [7]) by making the observation that this 
iterative argument can be modified to cover the nonnegative integral case: 

(1) I T..X- 2 ( . . ".. . ) ,V,",2 ••:"/ 
\ i=1 I ni+n2 + -"+nr=n 

where n /, n2, —, nr are nonnegative integers and where the multinomial coefficients are given by 

( n )= dL . 

As before (Hilliker [6]) we begin with a triple summation expansion: 

(2) y\a-, = E E m » / E <* 
j=1 k=1 

WE 
\ 2=7 

n-k 

Here, we are using the convention that the empty sum is zero and that 0° = 1. 
We next assert that the Multinomial Theorem (1) is covered by the Formula (2). To see this, let us make a 

change of notation and write Formula (2) as 

(3) ( £ a; 
\ i=l 

where the double summation on the right is taken under 9.x and 22 with 1 < ex < r and 1 < c2 < n. We single 
out the terms for which n - 22 = 0 and write (3) as 

A7-£0 

Co ( L « ) - I «> E*/ - £ m * £ * + £ * e ; 
>0 \ C=/ . / n-Q2=0 

Note that, for nonzero terms, c, = 1 implies that A7 - fi2 = 0, so that the range in the summation with n - c2 > 0 
is 2 < e t </-and 1 <c 2 <n - 1. 

We now apply Formula (3) to the summation under 2 on the right side of (4). This iterative process may be 
continued. After/77 iterations of Formula (3), m > 0 and not too large, we obtain 
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2 «)"-„, L (4)("-S)-(—i^-*-) 
i-1 I n-SL? ^2m>0 

t*2m+1-1 x 

S 1=1 / 

n 

(5) [ ^ \ 
n-Z2-...-Q2m>0 

'^2m+1 
*2 £4 ^2m+2 ( \^ „_ \ n-SL2 *2m+2-

+ Y V / n \ f nr*2\ ... f>-*2 *2k-2\ %2-U *2k 

k=1 n-%2- C2A=0 ' 

Here, the indices are subject to the restrictions 
f / < e ; < r 

(6) < 1 < e2/>/ < c 2 / - / - / / for 7 < i < m, 
I / < c2/>2 < fl-22 c 2 / ' torO < / < m. 

Formula (5) is meaningful as long as m <r, so that the first two inequalities in (6) are possible and as long as 

(7) m < n, 

so that the last inequality in (6) is possible. We \etm = r- I Then, by (6) we have z2r-i
 = 1/ f ° r otherwise, we 

would have £7 > r. Consequently, for nonzero terms, 

n-5.2 %2r = 0. 
Formula (5) now takes the form 

<*> ( x > ) " - ~ E ("2)(^;2)-("-fi2«2r^-2)^-42;-, 
\ 1=1 I n-SL2-'-^2r=0 

*E E U ) ( " u 2 ) (""*2-*2k-*2k~2)#&-41% 
k=1 n-SL2 9.2k=0 

r 

E ^p ( n \ I n - fi2 \ i n - Zo- - ~ *2k-2 \ £* M ^2k 

k=1 n-SL2 %2k=0 

If the range of £2/, for 1 < / < r, is extended to include 0, then, the summation under k reduces to a single term, 
k = r; the restriction (7) may be lifted; and, by (6), the subscripts are uniquely determined: 2/ = r, 0.3= r- 1, 
'"' z2r-i = 1- The coefficients may be written as 

n(n - 1) - (n -SL2 %2r + V = n! 

SL2!Z4l—SL2r! %2lSL4i- •9-2r! 

It now follows from (8) that 

I n \(n-Q2 \...( n-Z2 *2r-2 \ 
\ C2 M U I \ *2r ) 

that 
r ,n 

2>) -
i=1 / n 

n! ^2U ^2f 
ar ar-t - a 7 

•9.2 %2r=0 

With a change of notation, the Multinomial Theorem (1) now follows. 
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[Continued from page 21.] 

Also, since a and |3 satisfy (4), we have the equations 

0P+2 = an + 1 + ^ J j anf pn+2 = ^n+1 + (*L^7) 0" (n > 1). 

Therefore, using (3), it follows that 
nn+1.lp-1\nn on-f-1 ( p__^J_ \ on 

Gn+2 = ^jf— = ^ 

Thanks to (5) it is now a simple matter (despite the complicated appearance of (2)) to generate terms of the 
sequence {Gn}, for any choice of/?. Assuming that we are interested only in integer-valued sequences, (5) tells 
us to take p of the form 4k + 1; namely p = 1,5,9, 13, 17, —. Thus the first five such sequences start as follows: 

p 

1 
5 
9 
13 
17 

4 

0 
1 
2 
3 
4 

Gi 

1 
1 
1 
1 
1 

G2 G3 

1 
2 
3 
4 
5 

G4 

1 
3 
5 
7 
9 

G5 

1 
5 
11 
19 
29 

G6 

1 
8 
21 
40 
65 

Gy 

1 
13 
43 
97 
181 

G8 

1 
21 
85 
217 
441 

G9 

1 
34 
171 
508 
1165 

G10 

1 
55 
341 
1159 
2929 

We can use the above table to guess at various properties of the generalized Fibonacci sequence {Gn}, espe-
cially if our knowledge of {Fn} is taken into account. Generalizations of some of the better-known properties 
of [Fn} are listed below. Of course, in each case, the original result may be found by taking 

p = 5, ^ 1 = 1 and Gn = F„ . 

(i) lim GJl±L=i±JlL 

(ii) Gn-Gn+2-Gt+1 = (-1)n+1 [£fl)n In > 1) 

[Continued on page 29.] 


