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The Multinomial Expansion for the case of a nonnegative integral exponent n can be derived by an argument
which involves the combinatorial significance of the multinomial coefficients. In the case of an arbitrary ex-
ponent n these combinatorial techniques break down. Here the derivation may be carried out by employment
of the Binomial Theorem for an arbitrary exponent coupled with the Multinomial Theorem for a nonnegative
integral exponent. See, for example, Chrystal [1] for these details. We have observed (Hilliker [6]) that in the
case where 7 isnotequal to a nonnegative integer, a version of the Multinomial Expansion may be derived by an
iterative argument which makes no reference to the Multinomial Theorem for a nonnegative integral exponent.
In this note we shall continue our sequence of expositions of the Binomial Theorem, the Multinomial Theorem,
and various Multinomial Expansions (Hilliker [2], [31, [4], [5], [6], [7]) by making the observation that this
iterative argument can be modified to cover the nonnegative integral case:
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whereny, no, ---, n, are nonnegative integers and where the multinomial coefficients are given by
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As before (Hilliker [6]) we begin with a trip/e summation expansion:
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Here, we are using the convention that the empty sum is zero and that 0° = 1.
We next assert that the Multinomial Theorem (1) is covered by the Formula (2). To see this, let us make a
change of notation and write Formula (2) as
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where the double summation on the right is taken under 2, and ¢, with 1 <@, <rand 1 <g, <n. Wesingle
out the terms for which n — ¢, = 0 and write (3) as

r n Q=1
) (Za,-) ST ()T ) T al

=1

Note that, for nonzero terms, 2, = 1 implies thatn — ¢, = 0, so that the range in the summation withn — ¢, >0
is2<¢ <rand1<e, <n-1

We now apply Formula (3) to the summation under ¢ on the right side of (4). This iterative process may be
continued. After /m iterations of Formula (3), m > 0 and not too large, we obtain
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Here, the indices are subject to the restrictions

1< Qy <r
(6) 1 < Qjr7 < Rj-g1—1, for7 <i<m,
7<522,-+2<n—522—---—522,', for0 </ < m.

Formula (5) is meaningful as long as m < r, so that the first two inequalities in (6) are possible and as long as
(7) m<n,

so that the last inequality in (6) is possible. We letm = r— 7. Then, by (6) we have 25,7 = 1, for otherwise, we
would have 27 > r. Consequently, for nonzero terms,

n—Q——2Q, = 0.
Formula (5) now takes the form
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If the range of 227, for 1 </ <r, is extended to include 0, then, the summation under & reduces to asingle term,

k = r; the restriction (7) may be lifted; and, by (6), the subscripts are uniquely determined: ¢7 =1, R3=r—1,
-+, Q9,-7 = 1. The coefficients may be written as
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It now follows from (8) that
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With a change of notation, the Multinomial Theorem (1) now follows.
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Also, since a and Bsatisfy (4), we have the equations
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Therefore, using {3), it follows that
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Thanks to (5) it is now a simple matter (despite the complicated appearance of (2)) to generate terms of the
sequence {Gn}, for any choice of p. Assuming that we are interested only in integer-valued sequences, (5) tells
us to take p of the form 4k + 7, namelyp =7, 5, 9, 13, 17, ---. Thus the first five such sequencesstart as follows:

v |6 6 6 6 65 G G 6 G 6o
1 0 1 i 1 1 1 1 1 1 1 1

5 1 1 1 2 3 5 8 13 21 34 55
9 2 1 1 3 5 11 21 43 85 1M 34
13 3 1 1 4 7 19 40 97 217 508 1159
17 4 1 1 5 9 29 65 181 441 1165 2929

We can use the above table to guess at various properties of the generalized Fibonacci sequence {G‘n}, espe-
cially if our knowledge of {Fn} is taken into account. Generalizations of some of the better-known properties
of {F,,} are listed below. Of course, in each case, the original resutt may be found by taking

p=5 E=l-y7 and G,=F,.
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