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Hilton [3] and Fielder [1] have presented formulas for the number of spanning trees of a labelled wheel or 
fan in terms of Fibonacci and Lucas numbers. Each of them has also counted thejiumber of spanning trees in 
one of these graphs which contain a specified edge. The purpose of this note is to generalize some of their re-
sults. The graph theory terminology used will be consistent with that in [2 ] , Fk denotes the kth Fibonacci 
number, and Lk denotes the kf Lucas number. All graphs will be connected, and ST(G) will denote the num-
ber of spanning trees of labelled graph, or multigraph, G. 

A fan on k vertices, denoted N^, is the graph obtained from path Pk-i = 2, 3, •••, k by making vertex 1 adja— 
cent to every vertex oiPk--/. The wheel on k vertices, denoted W^, is obtained by adding edge (2,k) to / l /^ . 
That is, Wk= Nk + (2,k). Aplanar qraph G is one that can be drawn in the plane so that no two edges intersect; 
G is outerplanar if it can be drawn in the plane so that no two edges intersect, and all its vertices lie on the same 
face; and a maximal outerplanar graph G is an outerplanar graph for which G + (u,v) is not outerplanar for any 
pair^/,1/ of vertices of G such that edge (u,v) is not already in G. For example, each fan is a maximal outerplanar 
graph because, as will be used in the proof of Proposition 1, an outerplanar graph on k vertices is maximal outer-
planar if and only if it has 2k - 3 edges. 

Figure 1 Three Graphs on Six Vertices 

As shown in Hilton [3] ,ST(Nf<) = F2k-2 a n d ST(Wk)= L.2k-2- 2- Let OPJ
k denote the set of maximal outer-

planar graphs with k vertices, of which exactly/ are of degree two. Note that/I/^ e QP% for k > 4, and, with Gi 
as in Figure \,G1-(3,6) e OP§ . 

*This work was done while the author was a National Academy of Sciences-National Research Council Post-
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Proposition 1. If// e OPJ;, then ST(H) = F2k.2. 
Proof. If k equals 4 or 5, then OPk = {/ l/^}, and ST(Nk) = F2k~2 *o r anY k. The proposition will be 

proved by induction on k. Suppose it is true f o r4< / r< /?— 7 with n > 6, and suppose H e OPn. Assume the 
vertices of H are labelled so that 1, 2, ••-, n is a cycle bounding the outside face and vertex n is one of the two 
vertices of degree two, written deg (n) = 2. Now H is maximally outerplanar implies that edge (1, n - 1)\s in H. 
Also, either (1, n - 2) or (n - 7, <?J is in H, and, by symmetry, one can assume (1, n - 2) is in //. (See Fig. 2.) 
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n - 1 /? - 2 

Figure 2 Structure in a Graph H e OP* 

Since any spanning tree T contains at least one edge incident with vertex n, either T is a spanning tree of 
H - (In) or H - (n - 7, /?A or else Tcontains both edges (In) and (n - 1, n). Now deg (n - 1) = 2'm H - n 
impl ies/ / - /? ^OP^v Hence, ST(H - (1,n» = ST(H - (n - 1, n)) = ST(H - n) = F2n-4. Also, deg (1) > 3 
and deg (n - 2) > 3 in H, but exactly one of these two vertices will have degree two in H - [n, n - 7}, that is, 
H - [n, n - 7} e 0Pn_2. Now the number of spanning trees of H using both (l,n) and (n - 7, n) equals the 
number of spanning trees of H - n using (1, n - 1). This is obtained by subtracting the number of spanning 
trees of H - n that contain (n - 1, n -~ 2) but not (1, n - 1) from the total number of spanning trees of H - n, 
and one obtains 

F2n-4 ~ ST(H -n-(ln-D) = F2n„4 - ST(H -{n,n-l}) = F2n.4 - F2n.6 = F2n.5. 
Consequently, 

ST(H) = ST(H- (In)) + ST(H - (n - 7, n» + F2n.„5 = 2F2n.4 + F2n,5 = F2n.2, 

and the proposition is proved. 
For OP I w i t h / > 3, no result like Proposition 1 is possible. Indeed, let/ / / = N7 + 8 + (8,4) + (8,5), and let 

H2 = N7 + 8 + (8,3) + (8,4). Then H-, e OP%. H2 e OP%. ST(H7) = 368 and ST(H2) = 369. 
Allowing there to be several edges connecting each pair of vertices, let G be any multigraph. Several observa-

tions can be helpful. 
Observation 1. Suppose v is a cutpoint of (connected) multigraph G, and G - v has components 

C i, C2l —, Ct. If/?,- is the subgraph of G induced by C-, and v (1 < / < t), then 
t 

ST(G) = l\ST(Bj). 
i=l 

For example, vertex 1 is a cutpoint of % - (3,4), and ST(N6- (3,4)) = ST(N3)*ST(N4) = 3-8 = 24. 

Observation 2. Suppose (u,v) is an edge of multigraph G and G' is obtained from G by identifying u 
and v and deleting (u,v). (Note that even if G is a graph then G' may have multiple edges. Also, if (u,v) is one of 
several edges between u and v, then G' will have loops, but no spanning tree contains a loop.) Then ST(G') is 
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the number of spanning trees of G that contain edge (u,v). For example, ST(Wk+j+1) is the number of spanning 
trees of "biwheel" Wkj (as in Fig. 3) which contain the edge (u,v). 

1 k+j 

Figure 3 A "Biwheel" on k+j + 2 Vertices with 7 < / < k and k > 2 

Observation 3. Suppose edge (u,v) is in spanning tree 7" of G. LetU (respectively, V) by the subgraph 
of G induced by the set of vertices in the component of T- (u,v) that contains */ (respectively, v). Clearly there 
areST(U)-ST(V) labelled spanning trees of G containing (u,v)that produce these same two subgraphs. This pre-
sents another way to count the labelled spanning trees of G containing (u,v). For example, in graph G j of Fig. 1, 
let u = 3 and v = 6. The possibilities for the vertex set of U are 

{3 } , {3,4}, {3, 4, 5}, {3,2}, {3 , 2, 4}, {3, 2, 4, 5}, {3, 2, 1}, {3, 2, 4, 1} and { 3, 2, 4, 1, 5 } . 

Thus one obtains 
1.21 + 1-3 + 1.1 + 1.8 + 3.3 + 3.1 + 1-1 + 8-1 + 21-1 = 75 

spanning trees containing (3,6). 
Let G be any multigraph, and let G' be as in Observation 2, then ST(G) = ST(G - (u,v)) +ST(G'). That is, 

ST(G) is given by evaluating the number of spanning trees in two multigraphs, each one with fewer edges and 
one with one fewer vertices. As this procedure can be iterated, one can compute ST(G) in tfeis manner tot any 
multigraph G. 

One can also find formulas for classes of graphs, such as the "biwheels," where the biwheel on k + j +2 ver-
tices, denoted Wkjr is as in Fig. 3 with deg (u) = k+ 7 and deg (v)= j+ 1. 

Let U (respectively, V) be the fan % (respectively, Nj) containing u (respectively, v) in 

H = WkJ-{(k,k+ 11 (u,v), (I k +j)} . 

Consider the spanning trees of Wkj that contain (k, k+ 7̂  and (1, k+j) but not (u,v). Any such spanning tree of 
Wkj contains a spanning tree of U or V, but not both. The number of such spanning trees that contain a fixed 
spanning tree of V can be found, using a slight variation of Observation 3, by enumerating the number of span-
ning subgraphs of U that have two components, each of which is a tree, one containing vertex 1 and the other 
containing vertex k. This equals 2(ST(Nk) + ST(Nk.1) + - + ST(N2)). Similarly, if / > 2, there are 

2(ST(Nj) + ST(NH) + - + ST(N2)) 

such spanning trees containing a fixed spanning tree of U. 

Proposition 2. ST(WkJ) = L2k+2j + 2F2k+2j - 2F2j - 2F2k - 2. 

Proof. The number of spanning trees of Wkj which contain (u,v) is ST(Wk+j+i )• The number of span-
ning trees containing Ik, k + 1) but not (u,v) or ft k +]) (or (1, k +j) but not (k, k + 1) or (u,v)) is 
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ST(Nk+1hST(Nj+1). 
Thus 

ST(Wkt1) = L2k+2-2+2F2k + 2(F2 + F4 + -+F2k.2l 

and, if/ > 2, 

ST(WkJ) = L2k+2j- 2 + 2F2kF2j + 2F2j(F2+ F4 + •••+ F2k-2) + 2F2k(F2+ F4 + ••+ F2h2>. 

Simple Fibonacci identities reduce these equations to the desired formula. 
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T H E D I O P H A N T I N E E Q U A T I O N (x7 + x2 + •» +xn)
2 = xf + x3

2+>~ + x3
n 

W. R. UTZ 
University of Missouri - Columbia, Mo. 

The Diophantine equation 

(1) (x1+x2 + -+xn)
2 = x3 + x3

2 + ~+x3
n 

has the non-trivial solution X; = i as well as permutations of this n-tuple since 
n n 

£ / - n(n + 1)/2 and £ j3 = n
2(n + l)2/4. 

i=l i=1 

Also, for any n, x; v n for all / = /, 2, •••, n, is a solution of (1). Thus, (1) has an infinite number of non-trivial 
solutions in positive integers. 

On the other hand if one assumes x\ > Of then for each / one has x; <n . To see this, let a be the largest co-
ordinate in a solution (xj, x2, ••-, xn). Then, 

Xf + x2 + •'• + xn < na. 

For the same solution 
x3+x2+- + x3 > a3 

and so a < n2. Thus, we see that for a fixed positive integer, A7, equation (1) has only a finite number of solu-
tions in positive integers and we have proved the following theorem. 

Theorem. Equation (1) has only a finite number of solutions in positive integers for a fixed positive inte-
ger /7 but as n -> °° the number of solutions is unbounded. 

Clearly if (x j, x2f •••, xn) is a solution of (1) wherein some entry is zero, then one has knowledge of a solu-
tion (1) for/7 - 7 and so, except for/7 = /, we exclude all solutions with a zero coordinate hereafter. 

[Continued on page 16.] 


