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Also, since a and |3 satisfy (4), we have the equations 

0P+2 = an + 1 + ^ J j anf pn+2 = ^n+1 + (*L^7) 0" (n > 1). 

Therefore, using (3), it follows that 
nn+1.lp-1\nn on-f-1 ( p__^J_ \ on 

Gn+2 = ^jf— = ^ 

Thanks to (5) it is now a simple matter (despite the complicated appearance of (2)) to generate terms of the 
sequence {Gn}, for any choice of/?. Assuming that we are interested only in integer-valued sequences, (5) tells 
us to take p of the form 4k + 1; namely p = 1,5,9, 13, 17, —. Thus the first five such sequences start as follows: 

p 

1 
5 
9 
13 
17 

4 

0 
1 
2 
3 
4 

Gi 

1 
1 
1 
1 
1 

G2 G3 

1 
2 
3 
4 
5 

G4 

1 
3 
5 
7 
9 

G5 

1 
5 
11 
19 
29 

G6 

1 
8 
21 
40 
65 

Gy 

1 
13 
43 
97 
181 

G8 

1 
21 
85 
217 
441 

G9 

1 
34 
171 
508 
1165 

G10 

1 
55 
341 
1159 
2929 

We can use the above table to guess at various properties of the generalized Fibonacci sequence {Gn}, espe-
cially if our knowledge of {Fn} is taken into account. Generalizations of some of the better-known properties 
of [Fn} are listed below. Of course, in each case, the original result may be found by taking 

p = 5, ^ 1 = 1 and Gn = F„ . 

(i) lim GJl±L=i±JlL 

(ii) Gn-Gn+2-Gt+1 = (-1)n+1 [£fl)n In > 1) 

[Continued on page 29.] 


