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H-272 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Show that 
m 

1=0 
is symmetric in/7, q, r. 

H-273 Proposed by W. G. Brady, Slippery Rock State College, Slippery Rock, Pennsylvania. 

Consider, after Hoggatt and H-257, the array D, indicated below in which L2n+i (n = 0, 1,2, --J is written 
in staggered columns 

1 
4 

11 
29 
76 

1 
4 

11 
29 

1 
4 

11 1 

Show that the row sums are L2n+2 ~ <?• 
II. Show that the rising diagonal sums are F2n+3 ~ 1, where l-2n+l ls t n e largest element in the sum. 

iii. Show that if the columns are multiplied by 1, 2,3, ••• sequentially to the right then the row sums are 
L2n+3-(2n+3). 

SOLUTIONS 

LOOK-SERIES 

H-251 Proposed by P. B rue km an, University of Illinois at Chicago, Chicago, Illinois. 

Prove the identity: 

it x"2 = it — 
n=0 lMn]

2 n=0 <X)n ' 
where 

(x)n = (i-x)(l-x
2)-(l-xn), (x)0= 1. 

Solution by the Proposer. 

Define f(z,y) by the following: 

(D f(z,y} = I\ (i + y2r~1?)-
r=1 

185 
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Then we may set 

f(z,Y)= E Am(y)zm. 
m=0 

also observing that f(0,y) = 1 = Ag(yl 
Now, 

f(y2z,y) = (l+yzr1f(z,y), 

which is readily derived from the definition of f(z,y), i.e., 

f(z,y) = (1 + yz)f(y2z,y). 

Translating this relation into series notation, we obtain the following: 

£ Am(ykm - £ Am(y)y2mzm+£ A^fyJy^V' 
m=0 m=0 m=1 

This yields the simple recursion: 
(1-y2m)Am(y) = y2m-1Am-1(y), 

with Ag(y) = I By an easy induction, we derive the formula: 

Am(y> = -X— (m = 0,1,2,-). 
(y2)m 

Hence, 
m2 

(2) f(z,y)= f l (1+Y2r~1z)= £ J^~ zm • 

0 . ., , r=l m=0 (y2)m 
Similarly, 

(3) f(z~1,y) = f l a+y2r-1z'1)= £ J ~ 
r=1 n=0 (y2)n 

We now employ the well known Jacobi identity: 

(4) Hz,y)-1(z-\yh\\ (1-y2r)= £ y * V . 
r=l k=- <» 

VA\Q(y) denote the coefficient of z° in f(z,y)-f(z~1 ,y). Multiplying the series in (2) and (3), we see that^rV^ 
is obtained by letting /T? = n; hence, 

(5) 8(y) = X jfy-x-j • 
k-o {(y2)k)

2 

However, from (4), 

0(y) = l l (1-y2r)~1 . 
r=1 

Making the substitutionx = y we obtain the result: 
2 

(6) n n-xr1 = E r-^ • 
r=1 n=0 | (x)n) 

Now the infinite product in (6) is the well known generating function torp(n), the number of partitions of/7; 
however, it is also equal to the series: oo 

Y J^L 
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To establish this, define 

and set 

g(zfx) = n (1-zxrF1. 
r=1 

ffkxi = E Bn(x)zn. 
n=0 

observing that g(0,x) = 1 = BQ(X). By inspection of the infinite product definition of g(z,x], we may obtain the 
relation: g(zx,x) = (1 - zx)g(zfx); as before, translating this into the infinite series expansions, we obtain the 
recursion: 

(1-xn)Bn(x) = xBn-i(x), B0(x) = 1. 

From this, we readily establish that 
Bn(x) = xn/(x)n, n = 0,1,2,-. 

Hence, we have derived the following: 

(7) 0 d-xT' = g(hx) = t P(n)x" - E £- = £ 72^T- , 
r=1 n=0 n=0 {X'n n^O \(x)n)^ 

for suitable region of convergence (actually, for \x\< 1.) This establishes the result. 

Also solved by G. Lord and P. Tracy. 
SUB PRODUCT 

H-252 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Let AnXn be an A7 x /7 lower semi-matrix and BnXn, CnXn
 De matrices such X\\a\AnXnBnXn

 = CnXn. Let 
A/<xk,BkXk,CkXk be the kxk upper left submatrices of AnXn,BnXn, and CnXn, Show AkxkBkxk = CkXk 
fork = 1,2, ...,/?. 

Solution by Paul S. B rue km an, University of Illinois at Chicago, Chicago Circle, Illinois. 

Let ajj, bjj and c,j denote the entries of A, B and C, respectively (i,j = 1, 2, ••-, n). By hypothesis, 
n 

(1) 53 airbn = cij> U = IZ - / n; 
r=1 

(2) ajr = 0 if / < r. 

Combining (1) and (2), we thus have: 
/ 

(3) 53 air°n = cu- 'J = 1* 2 > ' " ' n • 
r=1 

If we impose the restriction: / < k, where k < n, then in view of (2) we may as well extend the sum in (3) as 
follows: 

k 

(4) 53 Vrbrj = c-,j, i = 1, 2, •-, k, j = 1, 2, - , n . 
r=1 

In particular, 
k 

(5) 53 ajrbrj = Cjj, i,j = 1,2, -,k. 
r=1 

This is equivalent to the desired result 
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TRIPLE PLAY 

H-253 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 

t=0 j~0 m=0 

n+m-t-j-1 

r=0 

where 0 is an arbitrary complex number and n and k are positive integers, k <n. 
This identity, in the case 0= 2, arose in solving a combinatorial problem in two different ways. 

Solution by the Proposer. 
To prove the identity we replace n by n + k + 1 and use 

„OL+1 

(D z ( a t P k y k=0 (l-Vx+V 

where wx^ - x + 1 = 0. This follows from the Lagrange expansion formula (cf. Polya and Szegd, Aufgaben und 
Lehrsatze aus der Analysis, I, Berlin, Springer, 1954, p. 125). 

From (1) we have 

to k ] n-m+e • 
where wx® - x + 1 = 0. Also from (1) we get 

00 k n j n+k+m-t-j 

^(Ni^y^^,^/) E ( „ + , + / / _ . . f _ r ) ( ^ ; - ' ) 
k=0 t=0 j=0 m=0 r=0 

»,Mr(.„j-,,rr')-f-'('-^^)s(7) 
7 n+k-m 

A77=0 /-=0 

where n/x^ — x * 7 = £7. 
Now 

jS-f 7 °° . . n . . / . n+k-m 

jj^rrp E^-'^EO) E^ l i , ) E U/_)(2/r?) 
£=0 y=0 /?7=0 r~0 

^ 0 0 00 m j j B+1 -n n °° °° min{/r , / } 

r 7=0 r=0 A:=0 m=0 

-£i£e E(;)"-^-v f f-'^ti) i (i)fr""'^ -
p P 7=0 m=0 Ar=0 

[Continued on page 192.] 


