BIJECTION IN $Z^{+} \times Z^{+}$

B-333 Proposed by Phil Mana, Albuquerque, New Mexico.
Let S_{n} be the set of ordered pairs of integers (a, b) with both $0<a<b$ and $a+b \leqslant n$. Let T_{n} be the set of ordered pairs of integers (c, d) with both $0<c<d<n$ and $c+d>n$. For $n \geqslant 3$, establish at least one bijection (i.e., 1-to-1 corresp ondence) between S_{n} and T_{n+1}.
I. Solution by Herta T. Freitag, Roanoke, Virginia; Frank Higgins, Naperville, Illinois; and the Proposer (each separately).
or inversely,

$$
c=b \quad \text { and } \quad d=n+1-a
$$

$$
a=n+1-d \quad \text { and } \quad b=c .
$$

II. Solution by Mike Hoffman, Warner Robins, Georgia; and the Proposer (separately).

$$
c=n+1-b \quad \text { and } \quad d=n+1-a
$$

or, inversely,

$$
a=n+1-d \quad \text { and } \quad b=n+1-c .
$$

It is straightforward to verify that $a+b \leqslant n$ if and only if $c+d>n$ and hence that each of I and II gives a one-to-one correspondence.
[Continued from page 188.]

ADV ANCED PROBLEMS AND SOLUTIONS

$$
\begin{aligned}
& =\frac{x^{\beta+1} w^{-n}}{(1-\beta) x+\beta} \sum_{j=0}^{n}\binom{n}{j}\left(1-x^{\beta-1} w\right)^{-2 j} \sum_{m=0}^{\infty}(-1)^{n+j+m}\binom{j}{m}\left(x^{\beta-1} w\right)^{m}\left(1+x^{\beta-1} w\right)^{j} \\
& =\frac{x^{\beta+1}(-w)^{-n}}{(1-\beta) x+\beta} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j}\left(\frac{1+x^{\beta-1} w}{1-x^{\beta-1} w}\right)^{j}=\frac{x^{\beta+1}(-w)^{-n}}{(1-\beta) x+\beta)}\left(\frac{-2 x^{\beta-1} w}{1-x^{\beta-1} w}\right)^{n} \\
& =\frac{x^{\beta+1} 2^{n}}{((1-\beta) x+\beta)}\left(\frac{x^{\beta-1}}{1-x^{\beta-1} w}\right)^{n}=\frac{2^{n} x^{\beta n+\beta+1}}{(1-\beta) x+\beta}
\end{aligned}
$$

Comparing this with (1), it is clear that we have proved the identity.

CORRECTION

H-267 (Corrected)
Show that

$$
S(x)=\sum_{n=0}^{\infty} \frac{(k n+1)^{n-1} X^{n}}{n!}
$$

satisfies $S(x)=e^{x S^{k}(x)}$.

