ELEMENTARY PROBLEMS AND SOLUTIONS

APR. 1977

BIJECTION IN $Z^+ \times Z^+$

B-333 Proposed by Phil Mana, Albuquerque, New Mexico.

Let S_n be the set of ordered pairs of integers (a,b) with both 0 < a < b and $a + b \le n$. Let T_n be the set of ordered pairs of integers (c,d) with both 0 < c < d < n and c + d > n. For $n \ge 3$, establish at least one bijection (i.e., 1-to-1 correspondence) between S_n and T_{n+1} .

I. Solution by Herta T. Freitag, Roanoke, Virginia; Frank Higgins, Naperville, Illinois; and the Proposer (each separately). c = b and d = n + 1 - a

or inversely,

$$a = n + 1 - d$$
 and $b = c$.

II. Solution by Mike Hoffman, Warner Robins, Georgia; and the Proposer (separately).

$$c = n + 1 - b$$
 and $d = n + 1 - a$

or, inversely,

$$a = n + 1 - d$$
 and $b = n + 1 - c$.

It is straightforward to verify that $a + b \le n$ if and only if c + d > n and hence that each of I and II gives a one-to-one correspondence.

[Continued from page 188.]

ADVANCED PROBLEMS AND SOLUTIONS

$$\begin{split} &= \frac{x^{\beta+1}w^{-n}}{(1-\beta)x+\beta} \sum_{j=0}^{n} \binom{n}{j} (1-x^{\beta-1}w)^{-2j} \sum_{m=0}^{\infty} (-1)^{n+j+m} \binom{j}{m} (x^{\beta-1}w)^{m} (1+x^{\beta-1}w)^{j} \\ &= \frac{x^{\beta+1}(-w)^{-n}}{(1-\beta)x+\beta} \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} \binom{1+x^{\beta-1}w}{1-x^{\beta-1}w}^{j} = \frac{x^{\beta+1}(-w)^{-n}}{((1-\beta)x+\beta)} \binom{-2x^{\beta-1}w}{1-x^{\beta-1}w}^{n} \\ &= \frac{x^{\beta+1}2^{n}}{((1-\beta)x+\beta)} \left(\frac{x^{\beta-1}}{1-x^{\beta-1}w}\right)^{n} = \frac{2^{n}x^{\beta n+\beta+1}}{(1-\beta)x+\beta} \quad . \end{split}$$

Comparing this with (1), it is clear that we have proved the identity.

CORRECTION

H-267 (Corrected)

Show that

$$S(x) = \sum_{n=0}^{\infty} \frac{(kn+1)^{n-1} x^n}{n!}$$

satisfies $S(x) = e^{xS^k(x)}$.