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Theorem. Consider the following three statements: 

(1) 

(2) 

WW) = E QnMt0 

n=0 

In W.t) = E -'J1-
n=1 

(3) n<t>n(x) = V Ak(x)<t>n-k(x) . 
k=1 

Any two of these statements imply the third. 

Proof. For convenience in sum manipulation, let us define AQ= /SO that (3) becomes 
n 

(4) * (n + 1hf>n(x) = £ Ak(x)(pn.k(x). 
k=0 

We also normalize the (pn (x) so that §Q(X) = t 
Now assume that (1) and (4) are true; then from (4) we have 

or 

Hence by (1) 

E (n + Wnt" = £ L Ak<t>n-kt". 
n=0 n=0 k=0 

_d_ 
dt 

_d_ 
dt 

t E tnt" 
n=0 

= E E Ak<t>nt"+k 

n=0 k=1 

t^(x,t) E On? E Akt* , 
n=0 k=0 

Therefore 

or, by integration, 

_d 
dt 

t\p{x,t) W*.t) E Akt
k 

k=0 

dt - E Akt
k 1, 

t\p(xrt] k=0 

k Akt In imx,t)l =Yt^lT +^t+K(x). 
k=1 
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Hence 

\n^(x,t) - E ^j-+K(x). 
k=l 

We may assume K(x) = 0 since we assume the <pk(x) do not all have a common factor. 

In Wx,tt = E Akr 

k=1 
k ' 

which is statement (2). 
If we assume (2) and (4) are true, then we have from (4) 

£ (n + lH>„tn = £ £ Ak<pn-kt
n = £ <t>nt° £ / I * , * . 

/7=£7 n=0 k=0 n=0 k=0 

or 

dt t E 0 n ^ 
. n=0 

Divide and integrate, and we obtain 

k~1 

< E 0* *" 
A7=0 

-' E ^^ E ^ 
/7=0 k=0 

V ^ L L -f lnf^-ln/^W. 
" k 

k=1 
Therefore, using (2), 

(5) £ (}>n(x)tn = K(xMx,t) 
n=0 

From (2), In ty(x,0) = O, so that i)(xfO) = I Let f -* 0 in (5) and we get (pjx) = K(x), so K(x) = 1 since 
p0(x) = 1. Hence 

A7=0 

which is statement (1). 
If we assume (1) and (2) are true, we get 

Akf 
\x\M(x,t)l = E H f - +A0\nt 

k=1 

by adding In t to both sides of (2) and remembering thatAo= 1. Replacing \Jj(x,t) by its sum given in (1) and 
differentiating with respect to t, 

$ £ *nf+1= £ fntn+1 £ Akt-U%>. 
n=0 n=0 k=l 

/7=0 /?=0 A:=0 A?=0 Ar=0 

Equating coefficients of tn, 

(n + 1ht>n = £ <pn-kAk 

k=0 
which is (4). 
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By rewording the previous theorem, we obtain this rendition: 
M - - S ^ f " , sothatfi// = 2 ^ t ^ , then 

1 n 

e = Yl®ntn, where n®n = ] P * 0 * - / 0 , i - * . 
k=1 

This naturally leads to all manner of strange generating functions. Omitting the trivial intervening steps, we 
list a small sample and note it is mildly surprising that the left-hand side should generate such a nice set of 
coefficients. 

11 

2 I 

where 

where 

<p {t}exv{xt}exp{j0(t^/l - x 2 j } - H^nt", 

n 

"$" = £ ( JfZJJJ ) Pk-1<Pn-k • 
k=1 

exv{t(]-2xt + t2r1/2 } = X > " ^ 
n 

n(t)n = Z kPk-1<t>n-k • 
k=1 

where 

(1-t)k 

. " k(a + $+ Vk-1 naB . 
"On* E -iJTnlT-7- PkWk • 

41 

where 

(1 + a)k-1 

e x p { r V - / r ' } = E ^ f " , 

n 
k 

k=1 
"*«- T.ijrz-fy, )Bk-i<Pn-k-

In these equations, Pn and P%P are the Legendre and Jacobi polynomials, respectively, and Bn are the Bernoulli 
numbers. The (f)n are polynomials of degree/? except in 4_|. 

The class of integrals easily obtained from these generating functions should delight any collector of the 
esoteric. 

We close with two direct applications of the Theorem. Both are known, but the derivation is quite simplified. 

Since 

and -(1+a)\n(1-t)-j^ = 2 

n=0 

n=0 

1 +a-x(n+ 1) l fn+1 
n+1 J 

then nLn = J^ (1 + a- kx)L*_k, 
k=l 

where L„ are the Laguerre polynomials. 

6l Since (1 -2t cosx-f t2 )~1/z = J^ Pnfco$x)tn and -7A In (1 ~ 2t cos* + t2)= £ — - 7 cosrx 

n=0 r=1 

then (n + 7)Pn(cosx) = 23 coskxPn.k(cosx). 

k=0 
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