ON A PROPERTY OF CONSECUTIVE FAREY-FIBONACCI FRACTIONS

KRISHNASWAMI ALLADI The University of California, Los Angeles, California and A. G. SHANNON

The New South Wales Institute of Technology, Broadway, Australia

Krishnaswami Alladi [1] defined the Farey sequence of Fibonacci numbers of order F_n (where F_n is the n^{th} Fibonacci number) as the set of all possible fractions F_i/F_j , $i = 0, 1, \dots, n-1$; $j = 1, 2, \dots, n$; (i < j) arranged in ascending order of magnitude, with the last item $1(=F_1/F_2)$ and the first term $0 (=F_0/F_{n-1})$.

Now, the necessary and sufficient condition that the fractions h/k, h'/k', of F_n , the n^{th} ordinary Farey section, be consecutive is that

$$|kh'-hk'| = 1$$

and the fraction

(2)

is not in F_n .

All terms in F_{n+1} which are not in F_n are of the form (h + h')/(k + k'), where h/k and h'/k' are consecutive terms of F_n . (Proofs of these results are given in Hardy and Wright [3].)

(h + h')/(k + k')

The usefulness of this result in the description of continued fractions in terms of Farey sections (Mack [5]) is an incentive to determine its Fibonacci analogue. (Also relevant are Alladi [2] and Mack [4].)

In the notation of Alladi where $f \cdot f_n$ denotes a Farey sequence of order F_n , the analogue of (2) above is:

All terms of $f \cdot f_{n+1}$ which are not already in $f \cdot f_n$ are of the form $(F_i + F_j)/(F_k + F_{k+1})$ where F_i/F_k and F_i/F_{k+1} are consecutive terms of $f \cdot f_n$ (with the exception of the first term which equals $0/F_n$).

The result follows from Alladi's definition of "generating fractions" and it can be illustrated by

f•f5: 0/3, 1/5, 1/3, 2/5, 1/2, 3/5, 2/3, 1/1

and

f.f. 0/5, 1/8, 1/5, 2/8, 1/3, 3/8, 2/5, 1/2, 3/3, 5/8, 2/3, 1/1;

the terms of $f \cdot f_6$ which are not in $f \cdot f_5$ are

 $\frac{0}{5}, \frac{1}{8} = \frac{0+1}{3+5}, \quad \frac{2}{8} = \frac{1+1}{3+5}, \quad \frac{3}{8} = \frac{1+2}{3+5}, \quad \frac{5}{8} = \frac{3+2}{5+3}.$

It is of interest to consider the analogue of (1) and here we have a result similar to Theorem 2.3 of Alladi [1]. Our problem is the following:

If $f_{(r)n} = h/k$, and $f_{(r+1)n} = h/k$ then to find kh' - hk' purely in terms of r and n. We have the following theorem to this effect.

Theorem: Let $f_{(r)n} = h/k$ and $f_{(r+1)n} = h'/k'$. Then

$$kh' - hk' = \begin{cases} F_{n-1} & \text{for } r = 1 \\ F_{n-m} & \text{for } 1 < r \le (n^2 - 7n + 14)/2 \\ 1 & \text{for } r > (n^2 - 7n + 14)/2 \end{cases},$$

where

$$m = 2 + [(\sqrt{8r - 15} - 1)/2]$$

in which $[\cdot]$ is the greatest integer function.

Proof. The theorem follows if we combine Theorems 2.3 and 3.1a of Alladi [1]. By Theorem 2.3, if h/k and h'/k' are consecutive in $f \cdot f_n$ and satisfy 1 _ h _ h' _ 1

(3)
$$\frac{1}{F_{i}} \leq \frac{n}{k} < \frac{n}{k'} < \frac{1}{F_{i-1}}$$
then
(4) $h' - h' = F_{i-2}$.
So we first need to find the position of $1/F_{i}$ in $f \cdot f_{n}$. By Theorem 3.1a, if $f_{(r)n} = 1/F_{n-m}$ then
(5) $r = 2 + \{1 + 2 + 3 + \dots +\}$.
So by (3) and (4) if $f_{(r)n} = h/k$, and $f_{(r+1)} = h'/k'$ then
 $kh' - hk' = F_{n-m}$
if and only if

if and only if

(6)

$$\frac{1}{F_{n-m+2}} \leqslant f_{(r)n} \leqslant f_{(r+1)n} \leqslant \frac{1}{F_{n-m+1}} \ .$$

Now (6) and (5) combine to give

(7)
$$2 + \{1 + 2 + \dots + m - 2\} = \frac{m^2 - 3m + 6}{2} \le r < r + 1 \le 2 + \{1 + 2 + \dots + m - 1\} = \frac{m^2 - m + 4}{2}$$

Now the first inequality of (7) is essentially

(8)
$$m^{2} - 3m + 6 \leq 2r \iff \left(m - \frac{3}{2}\right)^{2} + \frac{15}{4} \leq 2r \iff (2m - 3)^{2} + 15 \leq 8r$$
$$\iff m \leq 2 + \frac{\sqrt{8r - 15} - 1}{2} = \frac{\sqrt{8r - 15} + 3}{2}.$$

Similarly the second inequality in (7) may be expressed as

$$+1 \leq \frac{m^2 - m + 4}{2} \iff r \leq \frac{m^2 - m + 2}{2} \iff 2r \leq (m - \frac{1}{2})^2 + \frac{7}{4}$$
$$\iff \vartheta r \leq (2m - 1)^2 + 7 \iff \frac{\sqrt{\vartheta r - 7} + 1}{2} \leq m.$$

(9)

Now consider for
$$r \ge 2$$

(10) $0 < \frac{\sqrt{8r-15}+3}{2} - \frac{\sqrt{8r-7}+1}{2} = \frac{2+\sqrt{8r-15}-\sqrt{8r-1}}{2} < 1.$

Now (10), (9) and (8) together imply

r

$$m = \left[\frac{\sqrt{8r-15}+3}{2}\right] = 2 + \left[\frac{\sqrt{8r-15}-1}{2}\right]$$

and that proves the theorem for $r \ge 2$. For r = 1, the first statement is trivially true. Since it is of interest if kh' - hk' = 1, let us determine when this occurs. This will happen if and only if (by (6) and (4))

(11)
$$\frac{1}{F_4} \leq f_{(r)n}$$
.

By (5) and (11) we have

$$r \geq 2 + \left\{ 1 + 2 + \dots + n - 4 \right\} = \frac{n^2 - 7n + 16}{2}$$

which is for

$$r > \frac{n^2 - 7n + 14}{2}$$

and that completes the proof.

REMARK. Note, in our theorem, if $f_{(r)n} = h/k$, and $f_{(r+1)n} = h'/k'$, we need not know the values of h/k, and h'/k' to determine kh' - hk'. This is determined purely in terms of r and n.

ON A PROPERTY OF CONSECUTIVE FAREY-FIBONACCI FRACTIONS

155

REFERENCES

- 1. Krishnaswami Alladi, "A Farey Sequence of Fibonacci numbers," *The Fibonacci Quarterly*, Vol. 13, No. 1, (Feb. 1975), pp. 1–10.
- 2. Krishnaswami Alladi, "Approximation of Irrationals with Farey Fibonacci Fractions," *The Fibonacci Quarterly*, Vol. 13, No. 3 (Oct. 1975), pp. 255–259.
- 3. G. H. Hardy and E. M. Wright, *An Introduction to the Theory of Numbers*, Clarendon Press, Oxford, 1965, Ch. III.
- 4. J. M. Mack, "A Note on Simultaneous Approximation," Bull. Austral. Math. Soc., Vol. 3 (1970), pp. 81-83.
- 5. J.M. Mack, "On the Continued Fraction Algorithm," Bull. Austral. Math. Soc., Vol. 3 (1970), pp. 413-422.

SUMS OF PRODUCTS INVOLVING FIBONACCI SEQUENCES

DORON ZEILBERGER The Weizmann Institute of Science, Rehovot, Israel DEDICATED TO JANE LEGRANGE

Definition. $\{H_n\}$ is Fibonacci if $H_n = H_{n-1} + H_{n-2}$, n > 1. Every Fibonacci sequence $\{H_n\}$ can be written as $H_n = Aa^n + B\beta^n$, where a, β are the roots of $x^2 - x - 1 = 0$. Thus

Theorem.

1977

$$\sum_{i,j=0}^{n} a_{ij}H_iK_j = 0$$

for any two Fibonacci sequences if and only if

$$P(z,w) = \sum_{i,j=0}^{n} a_{ij} z^{i} w^{j}$$

vanishes on $\{(a, a), (a, \beta), (\beta, a), (\beta, \beta)\}$.

Example. (Berzsenyi [1]): If *n* is even, prove that

$$\sum_{k=0}^{n} H_k K_{k+2m+1} = H_{m+n+1} K_{m+n+1} - H_{m+1} K_{m+1} + H_0 K_{2m+1}.$$

The corresponding P(z,w) is easily seen to satisfy the hypothesis of the theorem (using $a\beta = -1$, $a^2 - a - 1 = 0$).

REFERENCE

1. G. Berzsenyi, "Sums of Products of Generalized Fibonacci Numbers," *The Fibonacci Quarterly*, Vol. 13 (1975), pp. 343-344.
