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Krishnaswami Alladi [1] defined the Farey sequence of Fibonacci numbers of order £, (where £, is the nt

Fibonacci number) as the set of all possible fractions F;/F;, i=0, 1, -, n—1:j=1,2, -, n; (i <j) arranged in
ascending order of magnitude, with the last item 1(= F;/F5) and the first term 0 (= Fp/F,—7).

Now, the necessary and sufficient condition that the fractions h/k, h/k’, of F,, then th ordinary Farey section,
be consecutive is that

(1) |kh"—hk’| = 1
and the fraction

(2) (h+h)/(k+K)
isnotin F, .

All terms in F,+7 which are not in I¥; are of the form (h + h*)/(k + k’), where h/k and h"/k” are consecutive
terms of &, . (Proofs of these results are given in Hardy and Wright [3].)

The usefulness of this result in the description of continued fractions in terms of Farey sections (Mack [5])
is an incentive to determine its Fibonacci analogue. (Also relevant are Alladi [2] and Mack [4].)

In the notation of Alladi where 7-,, denotes a Farey sequence of order F,,, the analogue of (2) above is:

All terms of f-f,+7 which are not already in 7.7, are of the form (F; + F;)/(Fx + Fy+1) where F;/Fy and
Fj/Fi+1 are consecutive terms of £+7, (with the exception of the first term which equals 0/F, ).

The result follows from Alladi’s definition of “‘generating fractions” and it can be illustrated by

f-fg:  0/3, 1/5, 1/3, 2/5, 1/2, 3/5, 2/3, 11
and
f-fg: 0/5, 1/8, 1/5, 2/8, 1/3, 3/8, 2/5, 1/2, 3/3, 5/8, 2/3, 1/1;
the terms of f-fg which are notin 7-f5 are
1

0 1_0+1 2_1+41 3_1+42 5

5'8 3+5’" 8§ 3+5" 8§ 3+5 8

It is of interest to consider the analogue of (1) and here we have a result similar to Theorem 2.3 of Alladi [1].
Our problem is the following:

If #(,)n = h/k and f(r+1)p = h/k then to find kh” — hk” purely in terms of r and n. We have the following

theorem to this effect.
Theorem: Let f(,),=h/k and f(r+7), = h"/k’. Then

Fp_q for r=1
kh'— hk’ = {F,,_m for 1<r<(n?—7n+14)/2
7 for r> 2= 7n+14)2
where o
m = 2+[(8r— 15— 1)/2]
in which [-] is the greatest integer function.
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Proo f The theorem follows if we combine Theorems 2.3 and 3.1a of Alladi [1]. By Theorem 2.3, if f/k
and h’/k” are consecutive in f-f, and satisfy

7 h _h’ 1
(3) F <k<k’</-',~_7
then
(4) h"=h" = Fi_o.
So we first need to find the position of 1/F; in 7 - f,,. By Theorem 3.1q, if f(,), = 1/Fp—pm then
(5) r=2+{1+2+3++}

So by (3) and (8) if f,), = h/k, and f(p+7) = h'/k” then
kh"—hk” = Fpoom
if and only if
1__
Fn—m+7

(6) —1— < flein < fret)n <

2 2
(1) 2+{1+2++m-2}= m——“g”’—*—ﬁ <Sr<r+l <2+{1+2+4-+m—1}= ’1’—“2””4

Now the first inequality of (7) is essentially

2
m2-3m+6 < 2r <= (m—%) + —7; < 2r <= (2m-3}2+75 < 8r

@ <= m <2+\/§’_—2—~7—5—7=> 3,12_75+3‘

Similarly the second inequality in (7) may be expressed as
2 2
r+1 < Q’—:é’ﬂﬂ <> r <i”»——2ﬂ+—2 < 2r < (m-%)2+ %

(9)
< 8 <(2m—-12+7 < >£8L_2—7—+-7 <m.
Now consider forr>2

(10) 0 < \/5!‘_:;1—54'3 _ \/87374‘7 =2+\/8r—T§—\/8r—_1 < 1.

Now (10), (9) and (8) together imply

m = [AB‘L:;’B] =2+ [)E"Z—L—i_”"l

and that proves the theorem for r > 2. For r = 1, the first statement is trivially true.

Since it is of interest if k#” — hk” = 1, let us determine when this occurs. This will happen if and only if (by
(6) and (4))

1

(11) F—4 < f(r)n -

By (5) and (11) we have 2

r> 2+ {]+2+...+,7_4 } = ”__;Zziﬂg

which is for

n?—7n+14

r > 2

and that completes the proof.

REMARK. Note, in our theorem, if f,),, = h/k, and f(,+7)n = h’/k’, we need not know the values of #/k, and
h’/k” to determine kh” — hk’, This is determined purely in terms of 7 and 7.
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Definition. {H,} is Fibonacci if Hy = Hp-7 + Hpp, n > 1. Every Fibonacci sequence { #,,} can be
written as H,, = Aa” + BB", where a,( are the roots of xZ — x — 7= 0, Thus

Theorem.
n

Z .9,'//‘/,‘/(/ =0
ij=0

for any two Fibonacci sequences if and only if
n
Plzw) = 3 ajz'w’
i,j=0
vanishes on {(a, a), (a, B), (8, a), (8, B)}.
Example. (Berzsenyi [1]): If n is even, prove that

n
Z HiKk+om+1 = Hmen+1Km+n+1— Hm+7Km+1 +HoKom+1 .
k=0
The corresponding P(z,w) is easily seen to satisfy the hypothesis of the thearem (using af=-1, a> - a- 1=0).
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