ON A PROPERTY OF CONSECUTIVE FAREY-FIBONACCI FRACTIONS

KRISHNASWAMI ALLADI
The University of California, Los Angeles, California
and
A. G. SHANNON

The New South Wales Institute of Technology, Broadway, Australia

Krishnaswami Alladi [1] defined the Farey sequence of Fibonacci numbers of order F_{n} (where F_{n} is the $n{ }^{\text {th }}$ Fibonacci number) as the set of all possible fractions $F_{i} / F_{j}, i=0,1, \cdots, n-1 ; j=1,2, \cdots, n ;(i<j)$ arranged in ascending order of magnitude, with the last item $1\left(=F_{1} / F_{2}\right)$ and the first term $0\left(=F_{0} / F_{n-1}\right)$.
Now, the necessary and sufficient condition that the fractions $h / k, h^{\prime} / k^{\prime}$, of \boldsymbol{F}_{n}, the $n^{\text {th }}$ ordinary Farey section, be consecutive is that

$$
\begin{equation*}
\left|k h^{\prime}-h k^{\prime}\right|=1 \tag{1}
\end{equation*}
$$

and the fraction

$$
\begin{equation*}
\left(h+h^{\prime}\right) /\left(k+k^{\prime}\right) \tag{2}
\end{equation*}
$$

is not in F_{n}.
All terms in F_{n+1} which are not in F_{n} are of the form $\left(h+h^{\prime}\right) /\left(k+k^{\prime}\right)$, where h / k and h^{\prime} / k^{\prime} are consecutive terms of F_{n}. (Proofs of these results are given in Hardy and Wright [3].)
The usefulness of this result in the description of continued fractions in terms of Farey sections (Mack [5]) is an incentive to determine its Fibonacci analogue. (Also relevant are Alladi [2] and Mack [4] .)
In the notation of Alladi where $f \cdot f_{n}$ denotes a Farey sequence of order F_{n}, the analogue of (2) above is:
All terms of $f \cdot f_{n+1}$ which are not already in $f \cdot f_{n}$ are of the form $\left(F_{j}+F_{j}\right) /\left(F_{k}+F_{k+1}\right)$ where F_{i} / F_{k} and F_{j} / F_{k+1} are consecutive terms of $f \cdot f_{n}$ (with the exception of the first term which equals $0 / F_{n}$).
The result follows from Alladi's definition of "generating fractions" and it can be illustrated by
$f \cdot f_{5}: \quad 0 / 3,1 / 5,1 / 3,2 / 5,1 / 2,3 / 5,2 / 3,1 / 1$
and

$$
f \cdot f_{6}: \quad 0 / 5, \quad 1 / 8, \quad 1 / 5, \quad 2 / 8, \quad 1 / 3, \quad 3 / 8, \quad 2 / 5, \quad 1 / 2,3 / 3, \quad 5 / 8, \quad 2 / 3, \quad 1 / 1 ;
$$

the terms of $f \cdot f_{6}$ which are not in $f \cdot f_{5}$ are

$$
\frac{0}{5}, \frac{1}{8}=\frac{0+1}{3+5}, \quad \frac{2}{8}=\frac{1+1}{3+5}, \quad \frac{3}{8}=\frac{1+2}{3+5}, \quad \frac{5}{8}=\frac{3+2}{5+3} .
$$

It is of interest to consider the analogue of (1) and here we have a result similar to Theorem 2.3 of Alladi [1]. Our problem is the following:
If $f(r)_{n}=h / k$, and $f_{(r+1) n}=h / k$ then to find $k h^{\prime}-h k^{\prime}$ purely in terms of r and n. We have the following theorem to this effect.

Theorem: Let $f_{(r)_{n}}=h / k$ and $f_{(r+1)_{n}}=h^{\prime} / k^{\prime}$. Then

$$
k h^{\prime}-h k^{\prime}= \begin{cases}F_{n-1} & \text { for } r=1 \\ F_{n-m} & \text { for } 1<r \leqslant\left(n^{2}-7 n+14\right) / 2 \\ 1 & \text { for } r>\left(n^{2}-7 n+14\right) / 2\end{cases}
$$

where

$$
m=2+[(\sqrt{8 r-15}-1) / 2]
$$

in which [•] is the greatest integer function.

Proo f. The theorem follows if we combine Theorems 2.3 and 3.1a of Alladi [1]. By Theorem 2.3, if h / k and h^{\prime} / k^{\prime} are consecutive in $f \cdot f_{n}$ and satisfy

$$
\begin{equation*}
\frac{1}{F_{i}} \leqslant \frac{h}{k}<\frac{h^{\prime}}{k^{\prime}} \leqslant \frac{1}{F_{i-1}} \tag{3}
\end{equation*}
$$

then

$$
h^{\prime}-h^{\prime}=F_{i-2} .
$$

So we first need to find the position of $1 / F_{i}$ in $f \cdot f_{n}$. By Theorem 3.1a, if $f_{(r) n}=1 / F_{n-m}$ then
(5)

$$
r=2+\{1+2+3+\cdots+\}
$$

So by (3) and (4) if $f(r) n=h / k$, and $f(r+1)=h^{\prime} / k^{\prime}$ then

$$
k h^{\prime}-h k^{\prime}=F_{n-m}
$$

if and only if
(6)

$$
\frac{1}{F_{n-m+2}} \leqslant f_{(r)_{n}} \leqslant f_{(r+1) n} \leqslant \frac{1}{F_{n-m+1}}
$$

Now (6) and (5) combine to give
(7) $2+\{1+2+\cdots+m-2\}=\frac{m^{2}-3 m+6}{2} \leqslant r<r+1 \leqslant 2+\{1+2+\cdots+m-1\}=\frac{m^{2}-m+4}{2}$

Now the first inequality of (7) is essentially
(8)

$$
m^{2}-3 m+6 \leqslant 2 r \Leftrightarrow\left(m-\frac{3}{2}\right)^{2}+\frac{15}{4} \leqslant 2 r \Leftrightarrow(2 m-3)^{2}+15 \leqslant 8 r
$$

$$
\Leftrightarrow m \leqslant 2+\frac{\sqrt{8 r-15}-1}{2}=\frac{\sqrt{8 r-15}+3}{2} .
$$

Similarly the second inequality in (7) may be expressed as
(9)

$$
r+1 \leqslant \frac{m^{2}-m+4}{2} \Leftrightarrow r \leqslant \frac{m^{2}-m+2}{2} \Leftrightarrow 2 r \leqslant(m-1 / 2)^{2}+\frac{7}{4}
$$

$$
\Leftrightarrow 8 r \leqslant(2 m-1)^{2}+7 \Leftrightarrow \frac{\sqrt{8 r-7}+1}{2} \leqslant m .
$$

Now consider for $r \geqslant 2$

$$
\begin{equation*}
0<\frac{\sqrt{8 r-15}+3}{2}-\frac{\sqrt{8 r-7}+1}{2}=\frac{2+\sqrt{8 r-15}-\sqrt{8 r-1}}{2}<1 \tag{10}
\end{equation*}
$$

Now (10), (9) and (8) together imply

$$
m=\left[\frac{\sqrt{8 r-15}+3}{2}\right]=2+\left[\frac{\sqrt{8 r-15}-1}{2}\right]
$$

and that proves the theorem for $r \geq 2$. For $r=1$, the first statement is trivially true.
Since it is of interest if $k h^{\prime}-h k^{\prime}=1$, let us determine when this occurs. This will happen if and only if (by (6) and (4))
(11)

$$
\frac{1}{F_{4}} \leqslant f(r)_{n}
$$

By (5) and (11) we have

$$
r \geqslant 2+\{1+2+\cdots+n-4\}=\frac{n^{2}-7 n+16}{2}
$$

which is for

$$
r>\frac{n^{2}-7 n+14}{2}
$$

and that completes the proof.
REMARK. Note, in our theorem, if $f(r)_{n}=h / k$, and $f(r+1)_{n}=h^{\prime} / k^{\prime}$, we need not know the values of h / k, and h^{\prime} / k^{\prime} to determine $k h^{\prime}-h k^{\prime}$. This is determined purely in terms of r and n.

REFERENCES

1. Krishnaswami Alladi, "A Farey Sequence of Fibonacci numbers," The Fibonacci Quarterly, Vol. 13, No. 1, (Feb. 1975), pp. 1-10.
2. Krishnaswami Alladi, "Approximation of Irrationals with Farey Fibonacci Fractions," The Fibonacci Quarterly, Vol. 13, No. 3 (Oct. 1975), pp. 255-259.
3. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1965, Ch. III.
4. J.M. Mack, "A Note on Simultaneous Approximation," Bull. Austral. Math. Soc., Vol. 3 (1970), pp. 81-83.
5. J.M. Mack, "On the Continued Fraction Algorithm," Bull. Austral. Math. Soc., Vol. 3 (1970), pp. 413-422.

*

SUMS OF PRODUCTS INVOLVING FIBONACCI SEQUENCES

DORON ZEILBERGER
The Weizmann Institute of Science, Rehovot, Israel
dedicated to jane legrange

Definition. $\left\{H_{n}\right\}$ is Fibonacci if $H_{n}=H_{n-1}+H_{n-2}, n>1$. Every Fibonacci sequence $\left\{H_{n}\right\}$ can be written as $H_{n}=A a^{n}+B \beta^{n}$, where a, β are the roots of $x^{2}-x-1=0$. Thus
Theorem.

$$
\sum_{i, j=0}^{n} a_{i j} H_{i} K_{j}=0
$$

for any two Fibonacci sequences if and only if

$$
P(z, w)=\sum_{i, j=0}^{n} a_{i j} z^{i} w^{j}
$$

vanishes on $\{(a, a),(a, \beta),(\beta, a),(\beta, \beta)\}$.
Example. (Berzsenyi [1]): If n is even, prove that

$$
\sum_{k=0}^{n} H_{k} K_{k+2 m+1}=H_{m+n+1} K_{m+n+1}-H_{m+1} K_{m+1}+H_{0} K_{2 m+1}
$$

The corresponding $P(z, w)$ is easily seen to satisfy the hypothesis of the theorem (using $a \beta=-1, a^{2}-a-1=0$).

REFERENCE

1. G. Berzsenyi, "Sums of Products of Generalized Fibonacci Numbers," The Fibonacci Quarterly, Vol. 13 (1975), pp. 343-344.
