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If [Fn}™=1 is the sequence of Fibonacci numbers defined recursively by 

F1 = I F2 = I Fn = Fn-i + Fn-2, n > 3 

then Ci(x), the generating function for the sequence {Fn}™=1, is given by 

(1) Cj(x) = (1-x-x2)'1 = £ Fi+ix! -
i=0 

Letting Cn(x) be the generating function for the Cauchy convolution product of C-j(x) with itself n times 
and FfPj be the coefficient of x1 in the n th convolution, we have 1+1 

(2) CJ*> = (l-x-x2rn = E F^W* n > 1' 
i=0 

In a personal communique, V.E. Hoggatt, Jr., pointed out that he and Marjorie Bicknell have shown that 

hn+1 (3) Mm 'J^J = a 
n -> °° r(r) 

rn 
and 

F(r) 
(4) Mm -La— = g 

F(r+1) 

where a = (1 +V5) /2 . 
An immediate consequence of (3) is 

(5) Mm - ^ - = ak-m n+l 

Fl 

while by using (4), we obtain 

Ft 
(r) 
n+k (6) Mm - j ^ - = 0. 

n+m 

The purpose of this note is to extend the results of (3) and (4) to the columns of the convolution array form-
ed by a sequence of generalized Fibonacci numbers as well as to the array generated by the numerator poly-
nomials of the generating functions for the row sequences associated with the convolution array formed by the 
given sequence of generalized Fibonacci numbers. 

The sequence { Z / ^ } ^ of generalized Fibonacci numbers defined recursively by 

H1 = I H2 = P, Hn = H^ + Hn-2, n > 3 
has generating function C^(x) given by 
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(7) cyx) = £ Hi+1x'' = LULzJ^ = f ; (Fi+1 + (p- w-y. 
i=0 1-X-X2 j=0 

Using C*(x) for the Cauchy convolution product of C)(x) with itself n times and H\+\ for the coefficient of 
x' in the nth convolution, we have 

(8) W> - E »$W = ('-^^Y - E /̂V E W - ;;v 
/=0 \1-x-x ) i=o j=o 

= i{iO(p-viF(r_i+i)x'. 
i=o \ j=0 / 1=0 \ j=0 

Hence, 

J=0 

Using (5) together with the fact that (n. ) = 0 for/ > n, we have 
u (n) / /7 

j j m ^I±l - i ;m V* / ' M / 0 _ f l / c ^ / r ^ 
f/-A7 /=# 7=0 

M 
" " / ' l m ~ E (J) ̂ " ^>feVf^ = a .lim^ ^ 

so that 

(10) Jim -!±1{ = a 

and " ' 

(11) Jim 
u(n) 
ni+k k-m 

' ^ ° ° u(n) Hi+m 
a 

By (6) and an argument similar to that used in the derivation of (10), we have 

H!"> 

while 

so that 

.Mm - — ' — = 0 
' ^ ~ F(n+1) r i-n 

l_j(n+1) n+i 

(n+1) E ( j j 
thn J=0 

H(n) 

(12) .Mm — - ^ = 0 

and 
H(n+1) 

Ht 
(n) 
i+k (13) Jim - f * - = 0 . 
(n+1) Hi+m 

Let Rfn)(x) be the generating function for the sequence of elements in the nth row of the convolution array 
formed by the powers of Cffx). Then 
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(14) R*(x) = E HH+1)X'' -
i=0 

In [1] , it is shown that 

(15) R^x) = (1-x)'1 

(16) R%(x) = P(1-x)~2 

and 

U7) R.MJl^^^ n>3 
(1-x)n (1-x)n 

where N*(x) is a polynomial of degree n - 2 for/7 > 2. 
Let G*(x) be the generating function for the nth column of the left-adjusted triangular array formed by the 

coefficients of the N*(x) polynomials. In [1 ] , it is shown that 

(18) G^x) = q(x) 

(19) G$(x) = DC2(x) 
and 

(20) G*(x) = ~ ^ L 1 ^ G^M, n > 3 , 
(1-x-x2) 

where D = P — P — 7. By induction, it can be shown that 

(21) G*(x) = (E^Lzx£l^w n > 3 

which by an argument similar to that of (8) yields 

(22) G*fx) = D E ( £ (-1)] {"J2) (P~ Vn+2FW+1)x
1'. 

1=0 ' 1=0 
If we let gfr} be the coefficient of x' in G*(x) then we see that 

(23) gjl\= Fl+1 + tP-DFi 

(24) Oft = DF™ 
and 

(25) g(»> = D £ (-1)' (nJ2) (P~ J r ^ F J ^ , n > 3. 
j=0 

Following arguments similar to those given in obtaining (10) through (13), we have 
Jn) 

(26) .Mm yJ±l = a 
' ~* ~ gfn> 

Jn) 
(27) J r n ^ *^j- = ak~m 

B'i+m 

g!n} 

(28) .Mm -II—= o 
• -> °° Jn + 1) 

yi 

and 
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Jn) 
(29) Jim -^L- = 0. 
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SUMMATION OF MULTIPARAMETER HARMONIC SERIES 

B.J. CERIMELE 
Lilly Research Laboratories, Indianapolis, Indiana46206 

1. INTRODUCTION 

Consider the multiparameter alternating harmonic series denoted and defined by 
oo 

(D u(j;k1,.-,kn) = £ (-V'/tj + s;), 
i=0 

where/and the k; are positive integers, 5"̂  = ft sn = S, and 
/,mod n 

sf = [i/n]S+ J^ kt. 
t=1 

Note that the parameters kff •••, kn are successive cyclic denominator increments. In the ensuing treatment 
summation formulas for such series, to be called co-series, are developed which admit evaluation in terms of 
elementary functions. An example is included to illustrate the formulas. 

2. SUMMATION FORMULAS 

The expression of the summation formulas for the co-series (1) is based upon the following two lemmas. 

Lemma 1. 
t 1 

(2) u(j;k) = (MJG(j/k) = J xJ'1 dx/(l+xk) 

0 

= (-l)H(r/k)ln(1+x) 

-<2/k) J2 Fit*) cos ((2i+ Djit/k) - Q; (x) sin ((2i+ VjWk)]\0 , 
i=0 

[Continued on page 144.] 


