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An interesting application of the Tribonacci numbers appeared unexpectedly in the solution of the following 
problem. Begin with 4 nonnegative integers, for example, 9, 4, 6, 7. Take cyclic differences of pairs of numbers 
(the smaller number from the larger) where the fourth difference is always the difference between the last num-
ber (7 in the above example) and the first number (9 in the above example). Repeat this process on the differ-
ences. For the example above, we have 

I s t row 9 4 6 7 
2nd row 5 2 1 2 
3rc /row 3 1 1 3 
4f /7row 2 0 2 0 
5f /7row 2 2 2 2 
6f /7row 0 0 0 0 . 

Starting with the numbers 9, 4, 6, 7 and following the procedure described, the process terminates in the 6 ^ 
row with ail zeros. 

Problem. Are there 4 starting numbers that will terminate with all zeros in the 1th row, the 8th row, •••, 
the/7f/7row? 

Various sequences of numbers were tried but they were found unsatisfactory. One development that leads to 
a solution is outlined below. 

(a) Begin with 4 numbers, not all zero, 

(1) a b e d 

which are assumed to be known and then try to get the 4 numbers in the row directly above a, b, c, d, namely, 
the numbers 

(2) xx x2 x3 x4 . 
Thus, 
(3) 2nd row xx x2 xz x4 

15frow a b e d 

(b) Now, rather than try to solve the problem for arbitrary numbers a, b, c, d, we will take the special case 
where 
(4) d = a + b + c. 

In place of (3), we have 
2nd row xx xx+a xx+a + b xx+a + b+c 

*5' 15rrow a b c d = a + b+c. 

At this point, one can select xx to be any nonnegative integer. However, this procedure proves rather unpro-
ductive. We now assume that the summability pattern for the 4 known starting numbers 

a b c d = a + b + c 
also holds for 

(6) xx xx+a xx+a + b xx+ a + b + c. 
140 
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ix the above assumption, we have 

xx+(x1+a) + (xl+a + b) = xl+a+b+c. 

zing f o rx x , we get 
c- a 

ire n o w ^ is determined in terms of the known numbers a and c. Note that c - a must be even f o r x x to be 
nteger. 

nd. ) For a given set of 4 numbers a, b, c, d' = a + b + c, once*! is determined, we can get the 2 row in (5). 
umably, the procedure can then be repeated on the 2 row to get a 3 , 4 , etc. row. The following ex-
le shows that another slight modification is necessary. 
<ample 1. Begin with the four numbers 1, 1, 1, 3. These numbers satisfy the summability condition 
a + b + c. Using the condition in (8) with a = 1, c = /, we have 

_ c -

stituting in (5), we get 
2 ^ r o w 
15frow 

= 0. z 

0 1 2 3 
1 1 1 3 , 

r,nd 2 row now serves as our 4 known numbers a, b, c,d = a+ b + c. Here a = 0, c = 2 and from (8), we have 

) _ c - a 
2 

1 

ng (E 

) 

i) and (S ), we now have 

3 r d row 

2nd row 

l 5 t row 

1 

0 1 2 3 

1 1 1 3 . 

Ve now go on to the 4 t / 7 row. However, if we take the 3rd row 1, 1, 2 ,4 in (11) as our 4 known numbers, 
m a= 7, c = 2 a n d from (8) 

-) Xl 2 2 

lich is not an integer. Apparently, we cannot get the 4 t h row from our present method. 
Ve pause to point out several items of interest in the example above. 
I. We began the example 1 wi th the 4 starting numbers 1, 1, 1, 3. This was a rather arbitrary selection. If we 
j started wi th the 4 numbers 0, 0, 2, 2 we could have calculated the 4 t / ? row but the numbers here would 
IG been 1, 1, 2, 4 precisely the same as in our present example where again we would have been stopped. 
are appears to be no marked advantage in selecting other starting numbers rather than 1, 1, 1, 3, 
. In (11) the numbers in the 3rd row are the first four numbers of the classical Tribonacci sequence 

1 1 
T0 

2 
7\ 

4 

If we start with the Tribonacci numbers in (13), we have for the cyclic differences 

1. 
2. 
3. 
4. 
5. 
6. 
7. 

X all zeros in the seventh row. 

1 2 4 
0 1 2 3 

1 1 1. 3 
0 0 * 2 2 

0 2 0 2 
2 2 2 2 

0 0 0 0 
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Let us now return to (11) where our procedure was stopped. Multiply each element in each row of (11) by 2. 
We have 

3rd row 2 2 4 8 
(15) 2/?0'row 0 2 4 6 

l ^ r o w 2 2 2 6 . 
In the third row of (15),a = 2, c =4 and using (8), we have 

(16) xx = c-=^- = 1 

We can now get the 4 row. From the 4"^ row, we can get the 5 row and from the 5 row, we can get the 
6 f row before we are stopped by a non-integral value of xx. The cyclic differences are shown below. 

(17) 

6. 

5. 
4. 
3. 
2. 
1. 

13 

11 

As in (11) so in (17), the four numbers in row 6 (where we are stopped) are consecutive Tribonacci numbers 
T3 to TCi. A list of the first seventeen Tribonacci numbers is given below. 

(18) 

If we return to (17) and multiply each element in each row by 2, we can get rows 7, 8, 9 before we are stopped. 
The 4 numbers in row 9 are the 4 Tribonacci numbers 7, 13, 24, 44 (T5 to TQ, see (18)). 

The procedure is now clear. From (11), (15) and (17), whenever we are stopped, we multiply each element 
in each row by 2. This will allow us to go 3 rows upward. We are then stopped at a set of 4 Tribonacci num-
bers where the first two Tribonacci numbers overlap with the last two Tribonacci numbers of the preceding 
stopping point. If in (11) and (17), we take the cyclic differences from row 1 downward, we get 4 more rows 
before terminating in all zeros. We summarize the results. 

1 

1 
T1 

274 

Tn-1 

1 
T2 i 

504 
T12 

+ Tn-2 

2 4 
r3 U 

927 
T13 

+ Tn 

1 

T5 

1705 
T14 

-3, 

13 
T6 

n = 
Ti = 
T3 = 

24 44 
T7 T8 

3136 5768 
TIB T-16 

4, 5, 6, ... 
T2

 a 1 
2. 

81 149 
T9 T'fQ 

10,609 
T17 

Starting Tribonacci 
numbers 

T1 to T4 

(19) T3 to T6 

T5 to T8 

7> to T10 

Rows upward 
counting from 
row 1, 1, 1, 3 
row 2, 2, 2, 6 
row 4, 4, 4, 12 
row 8, 8, 8, 24, 

3 
6 
9 
2 

Rows downward 
not counting 

row 1, 1, 1, 3 
row 2, 2, 2, 6 
row 4,4,4, 12 
row 8, 8, 8, 24 

4 
4 
4 
4 

Total rows 

7 
10 
13 
16 

T2n+1 to T2n+4 row2n, 2n, 2n, (3)2n, 3(n + 1) rowi"7, 2h, 2n, (3)2n, 4 3(n+2)+l 

where n = 0, 1, 2, 3, — . 
If we take the four consecutive Tribonacci numbers T2n+1 to T2n+4, n = 0, 1, 2, 3, ••• we get all zeros in the 

3(n +2)+1 row. 
The starting Tribonacci numbers above begin with an odd-numbered term such as Tj, T3, T5, and so on. 

What happens if we start with an even-numbered term of the sequence, say T2, T4, T$f and so on? Actually, 



1977] AW APPLICATION OF TRIBOWACCI NUMBERS 143 

we get all zeros at precisely the same row as we did when we started with the odd-numbered Tribonacci se-
quence Ti, T3, T5, and so on. The summary is given below. 

(20) 

Starting Tribonacci 
numbers 

T2 to T5 

T4 to 7> 
T6 to Tg 

Rows upward 
counting from 

row 1, 1, 3, 5 
row 2,2, 6, 10 
row 4, 4, 12. ?0 

Rows downward 
not counting 

row 1, 1, 3, 5, 
row 2, 2,6, 10 
row 4, 4, 12,20 

Total rows 

7 
10 
13 

T2n to T2n+3 2n~1,2n~1,(3)2n-1,(5)2n~1 3n (see column 2) 4 3(n + 1)+1 

where n = 1, 2, 3, •••. 
We can rewrite the results in (19) to agree with the values of n in (20). Thus, for/7 = /, 2, 3, 

(21) Odd numbered starting 
Tribonacci numbers 

T2n-1, T2n 
T2n+1, T2n+2 

Even numbered starting 
Tribonacci numbers (22) txl!u«uJ""n7«M^lu«tr.",M T2n / T2n+1, T2n+2, ^2n+3 

will give all zeros for the 3(n + 1)+ 1 row. 

Conclusion. What are 4 starting numbers which give all zeros at precisely row m, where m = 1,2, 3, — ? 

Number of rows for which 

(23) 

For/?? > 6, note that the numbers 6, 7, 8, 9, •••, are 
a. multiples of 3, so that m = 3(n + 1), n = 1,2, 3, - , 
b. multiples of 3 plus 1, so that m = 3(n + 1) + 1, n= 1,2,3, -, 
c. multiplies of 3 plus 2, so that/77 = J ^ ^ 1)+2, n = 1f2,3, - . 

Actually, we have already solved the problem for the case where m =3(n + 1) + 1, n = 1, 2, 3, ••• (form equal 
to a multiple of 3 plus 1) in (21) and (22), If we take the solution (21), we can easily get the row above (21) 
which will be the solution form =3(n+ 1j + 2,n= 1,2,3, --.Moreover, if we go downward from (21;) by 
taking the cyclic differences, we will have the solution for the casern = 3(n + 1), n = 1, 2, 3, —. Thus, 

we get all zeros 
m = 1 
m = 2 
m = 3 
m = 4 
m = 5 

4 starting numbers 
0, 0, 0, 0 
1,1, U 
2, 0, 2, 4 
0, 2, 2, 4 
1, 1,3,5 

(24) Upward from 
(21) 

Relation (21) 

Downward 
(25) from (21) 

T2n-1 

Starting Tribonacci Numbers 
T2n+1 + T2n - l~2n+2 

T2n-1 T2n T2n+1 T2n+2 

Solution for 
m = 3(n + 1) + 2 

m = 3(n+1)+ 1 

T2n ~ T2n-1 T2n + 1 ' T2n T2n+2 ~ 1~2n+1 ^2n+2 " ^2n-1 m- 3(n+ 1) 

\th , Example 2. Find the 4 starting numbers that give all zerosrfor precisely the 8 row. 
Solution. Here m = 8 and m is a multiple of 3 plus 2. From m = 3(n + 1) + 2 we have 8 = 3(n + 1) + 2 or 

n = 1. From (24) the 4 starting Tribonacci numbers are 0, Tf, Tj + T2, T4 and concretely from (18) 0, 1, 2, 4. 

Now 
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(26) 

0 1 2 4 
1 1 2 4 

0 1 2 3 
1 1 1 3 

0 0 2 2 
0 2 0 2 

2 2 2 2 
0 0 0 0 

Using (21), (24) and (25) we have constructed the following table. 

Table 

m 

6 
! 7 
! 8 
! 9 
I 10 
! 1 1 
I 12 

13 
I 14 

n 

1 
1 
1 
2 
2 
2 
3 
3 

LL 

4 Starting Tribonacci Numbers ! 

0, 1, 2, 3 
1, 1, 2, 4 
0, 1, 2, 4 
2, 3, 6, 11 
2, 4, 7, 13 
0, 2, 6, 13 
6,11,20,37 
7,13,24,44 i 
0, 7,20,44 

• • • • • • • 
[Continued from page 116.] 
where 

q = [k/2], r = k, mod 2, / < / < k, 

Pj(x) = (1/2)ln[x2 - 2x cos ((21 + 1h/k) + 1], 

Q,(x) = arctan f(x - cos ((2i + 1)ir/k)/s\n ((2i + lh/k)] . 

Proof. The G function has the series and integral representation [4, p. 20] 

t1 

G(z) « 2 E (-Dn/(z + n) - 2 J xz~1dx/(1+x) 
n=0 0 

from which the first part of (2) is immediate. The integration formula is recorded in [5, p. 20]. 

Lemma 2. 
(3) cb (j;k1f k2) = (1/S)[\p f(j + k1)/S)-^ (j/S)], 

where the psi (digamma) function is the logarithmic derivative of the gamma function and has integral repre-
sentation for rational argument u/v, Q <u <v, 

(4) ^(u/v) = -C + v J (xv~1-xu~1)dx/(1-xv) 
0 

= -C - Inv- (TT/2) cot (wn/v) 

Q 

+ 1L c o s (2uiTi/v)in(4 sin2/7r/W + (-1)ubr
0ln2 , 

i=1 

where\q = [(v- 1)/2], r = u/2- [u/2], Ch Euler's constant. 
[Continued on page 149.] 


